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[1] INTRODUCTION 
 
[1.1] Our point of departure is the “Table of Tonal Relations,” or Tonnetz, used by Hugo Riemann 
(1902, 479) and other nineteenth-century German music theorists to model relationships among 
triads and keys.1 A rendering of this table appears in Figure 1.  
 
Figure 1. Riemann’s (1902) Table of Tonal Relations 
 
                           gisis disis aisis 

                     ais   eis   his   fisis cisis 

               h     fis   cis   gis   dis   ais   eis 

         c     g     d     a     e     h     fis   cis   gis 

   des   as    es    b     f     c     g     d     a     e     h 

         fes   ces   ges   des   as    es    b     f     c 

               asas  eses  heses fes   ces   ges   des 

                     feses ceses geses asas  eses 

 
More recently, neo-Riemannian theorists have resurrected the Tonnetz as a network on which to 
illustrate certain transformational relationships.2 It has been modularized to accommodate pitch-
class space, essentially forming a grid on the surface of a torus, and has been further generalized 
using techniques from graph theory and abstract algebra.3 In the present study, we consider the 
implications of a particular algebraic relation on a class of related Tonnetze, using various groups 
of GIS-intervals.4 The fundamental regions underlying their graphs describe Klein bottles;5 
therefore, we will refer to these constructs as “Klein-bottle Tonnetze.”6 
 
                                                           
1 For a discussion of the history and development of various Tonnetze, see Cohn (1997, 7–10; and 1998, 171–73) and 
Mooney (1996). 
2 Such transformational relationships originate with REL, PAR, and LT in Lewin (1982 and 1987). 
3 Hyer (1989) was the first to substitute pitch-class integers for letter names. Cohn (1997, Note 14) cites Lubin (1974) 
with having first observed the toroidal geometry of an enharmonically equivalent Tonnetz. Examples of generalized 
Tonnetze appear in Cohn (1997, 10–21) and Gollin (1998, 202–03). 
4 For a brief discussion of Generalized Interval Systems (GIS’s), see Lewin (1987, 26–30). 
5 The Klein bottle, named after mathematician Felix Klein, is a type of manifold, or unbounded surface. However, 
unlike a sphere or a torus, a Klein bottle has no inside or outside. 
6 In the case when the group of GIS-intervals is commutative, the fundamental region actually degenerates into a torus, 
not a Klein bottle. See Note 39. 
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[1.2] Klein-bottle Tonnetze that incorporate both Tn and In operators are related to Perle cycles,7 
and we may use both types of networks to study Klumpenhouwer networks.8 This relationship is 
an anti-isomorphism;9 hence, a T/I Klein-bottle Tonnetz10 and the Perle cycle to which it is anti-
isomorphic have the same algebraic structure. However, they have very different surface features. 
Corresponding regions within Perle cycles demonstrate strong Klumpenhouwer-network 
isographies,11 while the pitch-class contents of these segments belong to varying set-classes.12 In 
contrast, corresponding regions in T/I Klein-bottle Tonnetze display weak isographies, but the 
segments are members of the same set-class.13 
 
[1.3] Lewin (2002, 197) points out that Perle cycles are useful in Klumpenhouwer-network 
analysis, as they provide a method for modeling strong isographies. Their weakness, then, resides 
in the fact that they cannot be used to demonstrate recursive structures. Furthermore, neither the 
Perle-cyclic nor the recursive analytical method addresses specifically the set-class content of the 
pitch-class sets they interpret. Whereas this information may be of secondary importance in a 
transformational analysis, it is often musically salient, especially in passages with restricted set-
class content. Klein-bottle Tonnetze are capable of modeling recursion, particularly with regard to 
musical contexts in which the set-class content is circumscribed. Indeed, such modeling is useful, 
as the musical literature contains many instances of limited-set-class passages that suggest 
Klumpenhouwer-network interpretations. 
 
[1.4] Example 1a shows one such excerpt, the opening canon of no. 8, “Nacht,” from Arnold 
Schoenberg’s Pierrot Lunaire, op. 21. Example 1b demonstrates how the passage may be interpreted 
as a cycle of imbricated 3-3[014] trichords. Figure 2 presents a network of the passage, wherein these 
trichords appear as adjacent triangular subnetworks, labeled g1 through g9. As we will see later, this 
network is a Klein-bottle Tonnetz. Whereas the interpretation of 3-3[014] trichords elsewhere in the 
piece might suggest the exclusive use of Tn arrows,14 In arrows are appropriate here if we wish to show 
some degree of recursion. The inversional relation between adjacent trichords suggests their inclusion. 

                                                           
7 George Perle develops the concept of Perle cycles in his various writings, but particularly in Twelve-Tone Tonality 
(1996). They consist of interlocked, inversionally related interval cycles. 
8 Klumpenhouwer networks and their isographies first appeared in Lewin (1990), though the concept originates with 
Klumpenhouwer (1991). Perle (1993) suggests that we may consider all Klumpenhouwer networks as segments of Perle 
cycles (or, rather, Perle-Lansky cycles), a fact that Lewin (2002) demonstrates. Each of the four articles in Music Theory 
Spectrum 24.2 (Lambert 2002, Lewin 2002, Stoeker 2002, and Headlam 2002) focuses on the study of Klumpenhouwer 
networks and their relationship to Perle- and Perle-Lansky cycles. See also Morris (1998, 191–93) for a related discussion. 
9 An isomorphism is a one-to-one mapping F of a group G onto another H such that F(a)F(b) = F(ab) for any elements a 
and b in G. F and H, then, have the same algebraic structure. In an anti-isomorphism, we also have a one-to-one 
mapping F′ of a group G onto another H′. Now, however, F′(a)F(b) = F′(ba). Even though the ordering of a and b 
reverses on opposite sides of this equation, the algebraic structure of G and H′ is indeed the same. Anti-isomorphisms 
are discussed in Lewin (1987, 14) and Robinson (1982, 216). 
10 The notation “T/I” is often used for the order 24 dihedral group of Tn and In operators in the music theoretical 
literature. It does not signify a quotient group, as the notation might suggest. 
11 For instance, see Lewin’s (2002, 201) Example 2.8. 
12 Lambert (2002) investigates the occurrences of various set-classes in Klumpenhouwer-network classes (K-classes, 
following O’Donnell 1998). 
13 The anti-isomorphism of Perle cycles to T/I Klein-bottle Tonnetze thus recalls Lewin’s (1987, 46–48) anti-
isomorphism of “interval-preserving operations” to “transposition.” 
14 For example, in m. 8, the bass clarinet plays three occurrences of 3-3[014]: {E,G,E�}, {G,B�,G�}, and {E�,G�,D}. The 
pitch-classes of each individual trichord may be interpreted using (T3,T8,T1). Furthermore, these same operators also 
relate the successive trichords recursively as pitch-class sets. 



 

 

4 

 
 
 
 
 



 

 

5 

Figure 2. Network of imbricated trichords in the opening canon of “Nacht” 
 
       3<---T_9_---6<---T_9_---9<---T_9_---0<---T_9_---3 
      / \   g2    / \    g4   / \    g6   / \   g8    / \ 
     /   \       /   \       /   \       /   \       /   \ 
   I_7_  I_10_ I_1_  I_4_  I_7_  I_10_ I_1_  I_4_  I_7_  I_10_ 
   /       \   /       \   /       \   /       \   /       \ 
  /   g1    \ /   g3    \ /   g5    \ /   g7    \ /  g9=g1  \ 
 4----T_3_-->7----T_3_-->10---T_3_-->1----T_3_-->4----T_3_-->7 

 
 
[1.5] Figure 3 places the above trichordal subnetworks into a supernetwork, in which nodes 
represent underlying graphs, and edges represent hyper-operators.15 It is also a type of Klein-bottle 
network. The recursion between the two networks is evident when we compare the operators of 
Figure 2’s edges with the hyper-operators of the edges of Figure 3. Regardless of node content—
hence, taken only as graphs—we find a direct correspondence among these edges. The same 
operators which relate pitch-classes in Figure 2 also relate, via conjugation, the operators that 
interpret its trichords.16 Thus, we find a remarkable degree of consistency among the various levels 
of the example. 
 
Figure 3. Supernetwork of trichordal subnetworks in Figure 2 
 
       g5<-[T_9_]--g7<-[T_9_]--g1<-[T_9_]--g3<-[T_9_]--g5 
      / \         / \         / \         / \         / \ 
     /   \       /   \       /   \       /   \       /   \ 
[I_7_][I_10_][I_1_][I_4_][I_7_][I_10_][I_1_][I_4_][I_7_][I_10_] 
   /       \   /       \   /       \   /       \   /       \ 
  /         \ /         \ /         \ /         \ /         \ 
 g4--[T_3_]->g6--[T_3_]->g8--[T_3_]->g2--[T_3_]->g4--[T_3_]->g6 

 
 
[1.6] In the following sections, we generalize the theory of Klein-bottle Tonnetze. First, we arrive 
at an algebraic and graph-theoretical abstraction, and consider the relation of Klein-bottle Tonnetze 
to the more familiar toroidal models. Then, we examine various pitch-class networks that possess 
these properties. Specifically, we focus on those Klein-bottle Tonnetze which incorporate the cyclic 
T group, the dihedral T/I group, and a generalized quaternion subgroup of the T/M group.17 We 
examine next the various isographies that relate entire Klein-bottle Tonnetze to one another. 
Finally, we make some connections between neo-Riemannian and Klein-bottle Tonnetz theories, 
and suggest some further areas for musical analysis. 
 
                                                           
15 Figure 3 uses hyper-Tn- and hyper-In-operators that derive from the inner automorphism group of the T/I group. [Tn] 
describes a conjugation of the T/I group by Tn; [In] is a conjugation by In. We follow Klumpenhouwer’s (1998) 
convention of using square brackets for these hyper-operators, and angle brackets for those deriving from the full 
automorphism group. 
16 These same operators also relate the trichords as pitch-class sets, a special property of hyper-operators that derive 
from the inner automorphism group. See Klumpenhouwer (1998). 
17 A quaternion group Q2^n, where n ≥ 3, has a presentation of �x,y | x2^(n-1) = e, y2 = x2^(n-2), yxy-1 = x-1

�. The order of the 
group is, accordingly, a power n of 2 (Robinson 1982, 136). However, the T/M subgroup we will incorporate is not a 
true quaternion group. Rather, it is one of a class of so-called generalized quaternion groups Q4n, with a presentation 
�x,y | x2n = e, y2 = xn, and yxy-1 = x-1

� (from personal correspondence with Edward Gollin). 
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[2] KLEIN-BOTTLE GRAPHS 
 
[2.1] Theoretically, Riemann’s table in Figure 1 extends infinitely on a plane in two dimensions. 
Using its underlying graph, we may define these dimensions as follows: translation by x moves 
each node to the right by one, and translation by y moves each node upward by one. These 
translations correspond to musical transpositions by a just perfect fifth and a just major third, 
respectively. In other words, we map the figure’s interval content onto the infinite cyclic groups X 
and Y. By assigning finite orders to X and Y—musically, by accepting enharmonic and octave 
equivalence—we identify the figure’s two sets of parallel edges. Now each of the axes on the plane 
is circularized, and the figure forms a grid on the surface of a torus. The transformation group for 
the graph is given by the product set XY, and, because X and Y are both groups of translations, 
XY is also cyclic group, hence commutative.18 Accounting for node content, this group is 
generated by T7 and T4, which yields the familiar cyclic T group.19 
 
[2.2] Given a particular relation, we observe another geometry which arises from the product of 
two cycles: the Klein bottle. Initially, a Klein bottle is constructed like a torus. If we start with a 
rectangle, and bend it to identify two parallel edges, we obtain an open cylinder. If we then bend 
the cylinder around to join its two ends, we get a torus. To make a Klein bottle, we need to return 
to the cylinder. Again, we join its two ends, but not by bending the cylinder around; rather, we 
thrust one end through the side of the cylinder, and connect it to the other end internally. The 
surface must not really intersect itself through where the bottle’s neck is thrust. Rather, a fourth 
dimension is needed to go around the surface instead of through it. The result is an unbound 
surface with no inside or outside. 
 
[2.3] Figure 4 shows a pair of rectangles, and the identifications of their sides that yield 
respectively a torus and a Klein bottle.20 
 
Figure 4. Fundamental regions of a two-dimensional torus and Klein bottle 
 
a) torus                    b) Klein bottle 
    y----->-----xy = yx         w----->-----xw = wx^-1^ 
    |           |               |           | 
    ^           ^               ^           ^ 
    |           |               |           | 
    e----->-----x               e-----<-----x 
 
In Figure 4a, we identify the edges indicated by the ordered pairs (e,y) and (x,yx) by taking e to x, 
and y to xy, forming an upright cylinder. Then we identify edges (e,x) and (y,xy) by taking e to y 
and x to xy, obtaining a torus. In Figure 4b, we identify (e,w) and (x,xw) by taking x to e and w to 
xw. Again, we have an upright cylinder. Now we identify (e,x) with (xw,w) by taking e to xw and 
x to w, thus forming a Klein bottle.  
                                                           
18 We may give the group of the torus as G = �x,y | xm = yn = e, xy = yx�. It is a quotient of the plane symmetry group 
generated by two translations. We use the letter “e” for the identity element. 
19 In fact, the full T group may be generated by T7 alone; T4’s presence as a generator here is redundant. A more 
satisfying two-dimensional network in pitch-class space may be generated by T3 and T4, which intersect trivially, and 
also yield the full group. 
20 In the present study, we use left-functional orthography, following the standard music theoretic notation for the T/I 
group. In other words, the composition “yx” means “do x first, then to y.” 
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[2.4] To arrive at the relations necessary for a Klein bottle group, we start with two distinct cyclic 
groups W and Z, generated by w and z, respectively. On the underlying graphs of our Tonnetze, we 
define the operations w and z not as linear translations, like x and y, but rather as parallel glide 
reflections.21 A glide reflection is the product of two operations: first it reflects in an axis, then 
translates parallel to that axis.22 Figure 5 shows a fragment of a W-cycle of glide reflections. 
 
Figure 5. A portion of the W-cycle of glide reflections 
 
     w^3^ 
      \|   
       \   
       |\  
       | w^2^ 
       |/ 
       / 
      /| 
     w | +  
      \|   
       \   
       |\  
     * | e 
       |/  
       /   
      /|   
    (w^-1^) 
 
From e, w reflects first across an axis parallel to Y, taking e to *. Then w translates upward, taking 
* to w. This combination completes a move by w. A subsequent move by w also reflects across the 
same axis, now taking w to +, and translates upward, taking + to w2, and so forth. Of course, it is 
important to keep in mind that, like translations, glide reflections act on the entire plane, and not 
just on a single point. 
 
[2.5] Figure 6 shows a portion of another cycle of glide reflections, this one generated by z, 
together with our previous W-cycle. A move by z reflects across a different axis, parallel to Y, and 
then translates upward. Hence, both operations are sense-reversing with regard to a vector pointing 
in the direction of the (horizontal) X-axis. 
 
We note the following important relation,23 
 

DEFINITION 2.5.1 w2 = z2, 
 
which, for a finite w and z, incorporates into a presentation of a Klein-bottle group, G. 
 

DEFINITION 2.5.2 G = {w,z | wm = zn = e, w2 = z2}. 
                                                           
21 Glide reflections are discussed further in Coxeter and Moser (1965, 56) and Escher (1967, 12–13). 
22 These operations of reflection and translation (parallel to the axis of reflection) commute, so we achieve the same 
result by translating first, then reflecting. 
23 Coxeter and Moser (1965, 42–43) give an infinite plane symmetry group “p g,” which they present using two parallel 
glide reflections, w2 = z2, as in our 2.5.1 (however, they use variable names P and Q). By assigning finite orders to w 
and z, we obtain a quotient of the infinite group. This quotient is a Klein-bottle group. 
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Figure 6. A portion of a Z-cycle beginning at e 
 
 w^3^  | z^3^ 
  \    |/  
   \   /   
    \ /|   
     z^2^=w^2^ 
    / \|  
   /   \        
  /    |\ 
 w   + | z  
  \    |/ 
   \   /   
    \ /|   
     e | * 
    / \|   
   /   \ 
  /    |\   
(w^-1^)|(z^-1^) 
      
[2.6] The product of any two glide reflections is a translation. Accordingly, we may now define the 
translations x and y above in terms of w and z. 
 

DEFINITION 2.6.1 x = z-1w. 
 
DEFINITION 2.6.2 y = w2 = z2. 

 
Figure 7 is an illustration of e, w, x, y, and z, all originating from e. 
 
Figure 7. Elements e, w, x, y, and z of the Klein-bottle group 
 
     y = w^2^ = z^2^ 
    /|\ 
   w | z 
    \|/ 
     e---x = z^-1^w 

 
Using 2.6.1-2, we note further that 
 

THEOREM 2.6.3 w = zx 
 
and 
 

THEOREM 2.6.4 z = wx-1.24 
 
We may also give an alternative definition of z: 
 

COROLLARY 2.6.5 z = xw. 
 

                                                           
24 The proofs of all theorems in the text appear in the appendix ([9]). 
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[2.7] Now we construct an appropriate fundamental region for our Klein-bottle group. Whereas the 
relation in 2.5.1 suggests Figure 8, its graph does not intuitively resemble a Klein bottle. 
 
Figure 8. Fundamental region based on 2.5.1 
 
         y 
        / \ 
       ^   ^ 
      /     \ 
     w--->---z 
      \     / 
       ^   ^ 
        \ / 
         e 
 
 
Therefore, we will construct a variant that is easier to visualize. In doing so, we will move the top 
half of the figure by some member of the group.25 Multiplying the nodes of the upper triangle, 
(w,z,y), on the left by z-1 gives (x,e,z). 
 
TABLE 2.7.1 Mapping of (w,z,y) onto z-1(w,z,y) = (x,e,z) 
 
     Member of       Member of 
     (w,z,y)   z^-1^ (x,e,z) 
     ------------------------- 
       w       --->  x  (by 2.6.1) 
       z       --->  e  (by cancellation) 
       y       --->  z  (by 2.6.2) 

 
 
Next, we reconstruct the diagram using the original bottom half of Figure 8 and this variant of its 
top half (Figure 9). This diagram is also a fundamental region. 
 
Figure 9. Reconstructed fundamental region 
 
     w--->---z 
      \     / \ 
       ^   ^   ^ 
        \ /     \ 
         e---<---x 
 
 
Now we can more readily visualize the Klein bottle, using the following identifications of sides: 
(e,w) � (x,z) (by x), and (w,z) � (x,e) (by z-1). 
 
[2.8] A Klein-bottle group may be generated equivalently by using either two glide reflections, as 
above, or by one glide reflection and one translation. Since the latter conforms more to our notions 

                                                           
25 The practice of cutting off part of a fundamental region, and adding a congruent piece elsewhere by some member of 
the group, is standard in the mathematical literature. See Coxeter and Moser (1965, 44–45). 
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of the dihedral T/I group, we observe the following relations:26 
 

DEFINITION 2.8.1 w2 = y; xy = yx; w(x)w-1 = x-1 

 
that incorporate into a presentation of a group G in terms of its generators w and x. 
 

DEFINITION 2.8.2 G = �w,x | w2 = y; xy = yx; w(x)w-1 = x-1; wm = xn = e�. 
 
Given no further relations, we note that G is non-commutative. 
 
[2.9] In the generalized group, only the members of subgroup Y commute always with every 
member of the group. Therefore, 
 

THEOREM 2.9.1 Y is in the center of G. 
 
Accordingly, it is easy to show that Y is also a normal subgroup. Furthermore,  
 

THEOREM 2.9.2 X is a normal subgroup of G;  
 
and,  
 

THEOREM 2.9.3 if X has an even order k, then xk/2 is in the center of G. 
 
Now we may define the center of G, CG. 
 

DEFINITION 2.9.4 If 2 | |X|, then CG = �y,x|X|/2�; otherwise, CG = �y�. 
 
[2.10] Specifically, because X is normal in G, we may offer an alternate definition of G to 2.8.2, 
 

DEFINITION 2.10.1 G = XW, 
 
using the product formula for the set XW. The order of G is thus determined: 
 

DEFINITION 2.10.2 |G| = |W||X| / |W ∩ X|. 
 
Furthermore, 
 

THEOREM 2.10.3 2 | |G|.27 
 
Figure 10 shows a larger segment of an abstract Klein-bottle Tonnetz. Given no further relations, 
we find 2|G| unique triangles formed by mutually adjacent nodes in such a graph. 
 
 
                                                           
26 The relations in 2.8.1 present the same infinite group as in 2.5.1. 
27 As a consequence of 2.10.3, no Klein-bottle Tonnetze exist in mod 7 diatonic space, or in any other spaces of odd 
orders. 
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Figure 10. A portion of an abstract Klein-bottle Tonnetz 
 
   x^-2^w^2^__x^-1^w^2^_w^2^____xw^2^ 
         \     / \     / \     / \ 
          \   /   \   /   \   /   \ 
           \ /     \ /     \ /     \ 
            x^-1^w__w_______xw______x^2^w 
             \     / \     / \     / \ 
              \   /   \   /   \   /   \ 
               \ /     \ /     \ /     \ 
                x^-1^___e_______x_______x^2^ 
                 \     / \     / \     / \ 
                  \   /   \   /   \   /   \ 
                   \ /     \ /     \ /     \ 
                  w^-1^__xw^-1^__x^2^w^-1^__x^3^w^-1^ 
 
 
[2.11] In certain circumstances, G may be commutative, and in any such Klein-bottle Tonnetz, x 
generates an involution. 
 

THEOREM 2.11.1 If ab = ba for any a,b in G, then |X| = 2. 
 
For example, all Klein-bottle Tonnetze that use the commutative T group will have X = �T6�, the 
only involution in that group. 
 
[2.12] Finally, we note the condition under which the groups of two Klein-bottle Tonnetze, G and 
G′, are isomorphic. This condition will be of particular consequence in later sections. We define 
the isomorphism in terms of a bijective mapping, F, of G onto G′. 
 

DEFINITION 2.12.1 Let G and G′ be two groups, and let F be a bijective set mapping 
F: F(G) = G′. F is an isomorphism of G to G′ if F(h)F(g) = F(hg), for any g,h in G. 

 
Certain groups are isomorphic to themselves (by a map other than the identity), and such internal 
relationships define (nontrivial) automorphisms.28 
 

DEFINITION 2.12.2 Let G be a Klein-bottle group, and let F be a bijective set mapping 
F: F(G) = G. F is a group automorphism if, for any g,h in G, F(h)F(g) = F(hg). 

 
[2.13] The opening of Witold Lutosławski’s Funeral Music (Example 2) provides an illustration of 
how we can map musical materials to the nodes of a Klein-bottle graph. The piece begins with a twelve-
tone row, P0, presented in the Cello I solo. It consists of a fragment of a cycle of alternating tritones and 
descending minor seconds. This row is followed immediately in the same voice by a statement of I6, 
then another statement of P0, and so forth. The Cello II solo enters in strict imitation at the half note 
with a P6 form of the row. It continues correspondingly with I0, and again P6. Because of the row’s 
intervallic construction, every other harmonic interval in this canon is either a unison or an octave.  

                                                           
28 These automorphisms are not necessarily inner automorphisms, given by the mapping F: F(G) = g(G)g-1, for some g 
in G. However, in certain circumstances, they may be inner, as we will see below. For a discussion of inner and outer 
automorphisms in the context of the T/I group, see Klumpenhouwer (1998). 
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[2.14] The full cycle of alternating T11’s and T6’s, in that order, is twenty-four units long. We can 
map its operators onto the elements of an order 24 cyclic group W, as shown in Figure 11. 
 
Figure 11. Mapping of cycle of alternating descending minor seconds and tritones onto a cyclic 
group W 
 
w^1^  w^2^  w^3^  w^4^  w^5^  w^6^  w^7^  w^8^  w^9^  w^10^ w^11^ w^12^  
T_11_ T_5_  T_4_  T_10_ T_9_  T_3_  T_2_  T_8_  T_7_  T_1_  T_0_  T_6_ 
 
w^13^ w^14^ w^15^ w^16^ w^17^ w^18^ w^19^ w^20^ w^21^ w^22^ w^23^ w^24^ 
T_5_  T_11_ T_10_ T_4_  T_3_  T_9_  T_8_  T_2_  T_1_  T_7_  T_6_  T_0_ 
 
Next, we can produce another order 24 cycle by alternating T6’s and T11’s, in that order. We map 
its elements onto a cyclic group Z. (See Figure 12.) 
 
Figure 12. Mapping of cycle of alternating descending minor seconds and tritones onto a cyclic 
group Z 
 
z^1^  z^2^  z^3^  z^4^  z^5^  z^6^  z^7^  z^8^  z^9^  z^10^ z^11^ z^12^ 
T_6_  T_5_  T_11_ T_10_ T_4_  T_3_  T_9_  T_8_  T_2_  T_1_  T_7_  T_6_ 
 
z^13^ z^14^ z^15^ z^16^ z^17^ z^18^ z^19^ z^20^ z^21^ z^22^ z^23^ z^24^ 
T_0_  T_11_ T_5_  T_4_  T_10_ T_9_  T_3_  T_2_  T_8_  T_7_  T_1_  T_0_ 
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Under this mapping, w2 = z2, as T6T11 = T11T6 = T5. Furthermore, w24 = z24 = e. Thus, all the 
relations for a Klein-bottle group from 2.5.2 are satisfied. 
 
[2.15] Successive application of the members of W and Z to the pitch-class 6 yields the following 
two cycles of pitch-classes:  

W(6) = (6,5,11,10,4,3,9,8,2,1,7,6,0,11,5,4,10,9,3,2,8,7,1,0) and 
Z(6) = (6,0,11,5,4,10,9,3,2,8,7,1,0,6,5,11,10,4,3,9,8,2,1,7). 

Alternating members of these respective cycles belong to the same pitch-class. The Cello I solo 
presents a twelve-member fragment of W(6), beginning on the pitch-class 5 in the cycle’s second 
position: (5,11,10,4,3,9,8,2,1,7,6,0). This line continues with a twelve-member fragment from the 
retrograde of Z(6): (11,5,6,0,1,7,8,2,3,9,10,4). The Cello II solo imitates the Cello I solo with a 
(non-retrograded) fragment of Z(6), beginning on the pitch-class 11 in the cycle’s third position: 
(11,5,4,10,9,3,2,8,7,1,0,6). It continues with a fragment from the retrograde of W(6): 
(5,11,0,6,7,1,2,8,9,3,4,10). 
 
[2.16] These twelve-tone rows can be modeled entirely using a closed segment from the Klein-
bottle Tonnetz generated from this W(6) and Z(6). Figure 13 presents this fragment. The Cello I 
solo begins with the pitch-class 5 in the figure’s lower left-hand corner, and proceeds upward with 
pitch-classes 11 and 10 in the the figure’s middle and leftmost columns, respectively. The line 
continues with pitch-classes 4, 3, 9, 8, 2, 1, 7, 6, and 0, maintaining the alternation between these 
two columns. Next, it presents pitch-classes 11, 5, and 6, rounding the uppermost portion of the 
figure, and it concludes with pitch-classes 0, 1, 7, 8, 2, 3, 9, 10, and 4, descending and alternating 
between the rightmost two columns. At this point, it reaches pitch-class 5 again, and then repeats 
the entire cycle, and so forth. In short, it describes a jagged clockwise path around the figure. The 
Cello II solo begins with the pitch-class 11 at the bottom of the middle column, and it proceeds 
around the diagram in a jagged counterclockwise path. 
 
Figure 13. Klein-bottle Tonnetz fragment 
 
        5 
       / \ 
      11  6 
       \ / 
        0 
       / \ 
      6   1 
       \ / 
        7 
       / \ 
      1   8 
       \ / 
        2 
       / \ 
      8   3 
       \ / 
        9 
       / \ 
      3   10 
       \ / 
        4 
       / \ 
      10  5 
       \ / 
        11 
       / 
     (5) 
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[3] KLEIN-BOTTLE NETWORKS 
 
[3.1] We will now formalize the previous example. We will take G as a group of operations, and will 
examine the network obtained by applying all the members of G to a common object, p. For example, 
if p is a pitch-class integer, we obtain a Klein-bottle Tonnetz. We start with the concept of a P-set. 
 

DEFINITION 3.1.1 P = G(p). 
 
In other words, P is the orbit of p under G. We determine the order of P by extension of 2.10.2. 
 

THEOREM 3.1.2 |P| = |W(p)||X(p)| / |W(p) ∩ X(p)|.29 
 
In all cases, |X(p)| = |X|. Being a group of translations, X is fixed-point-free. However, in certain 
circumstances, |W(p)| < |W|, since W, as a group of glide reflections, may or may not be fixed-
point-free.30 Furthermore, sometimes |W(p) ∩ X(p)| > |W ∩ X|. This situation may occur in contexts 
in which certain images of p under both W and X are not unique.31 Moreover, because of the 
closure of G under its group operation, applying G to any member of P produces the same P-set. 
 

REMARK 3.1.3 G(pi) = G(pj) for any pi,pj in P. 
 
[3.2] In all events, our Tonnetz is now a true GIS in the sense of Lewin (1987, 26-30). We may 
represent it by the ordered triple (S,IVLS,int), in which the space S of the GIS consists of P; the 
group of intervals IVLS acting on P is G; and int is a function which assigns a value g from G to 
any pair (pi,pj) in P × P. In other words, int(pi,pj) = g, for some g in G. Our Tonnetz is, moreover, 
transitive, and also satisfies Lewin’s Condition (B) for uniqueness: for every pi in P and g in G, 
there is a unique pj in P which lies the interval g from pi. 
 
[3.3] We will now examine a segment from an abstract operational Tonnetz (Figure 14).  
 
Figure 14. A segment from an abstract Klein-bottle Tonnetz 
 
                e(p_4_) 
                 / \ 
              w ^   ^ z 
               /     \ 
              /   x   \ 
         e(p_2_)-->--e(p_3_) 
              \       / 
             w ^     ^ z 
                \   / 
                 \ / 
                e(p_1_) 
 
                                                           
29 The lengthy proof of 3.1.2 is omitted in the appendix for reasons of space. The interested reader may wish to begin 
with the notion of X’s being a normal subgroup in G (using 2.9.2). Equivalent to 3.1.2, we may also use the orbit-
length formula to determine the size of P: |P| = |G| / |GP|, where GP is the stabilizer in G of P. See Robinson (1982, 31). 
30 A simple example may be found using w = I0. Then, w(6) = 6, and w2(6) = e(6) = 6, the same point. Consequently, in 
this case, |W(p)| = 1 is less than |W| = 2. 
31 For example, using generators w = I8 and x = T2, (W ∩ X) = {T0} consists of a single member. Nevertheless, applied to 
a pitch-class p = 0, W(0) = (0,8), X(0) = (0,2,4,6,8,10), and (W(0) ∩ X(0)) = (0,8). We now find a two-member intersection set. 
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Following Lewin, Figure 14 is a network. Its space, which consists of the set of points S = 
{p1,p2,p3,p4}, is a subset of P. The intervals between these points, {e,w,w-1,x,x-1,y,y-1,z,z-1}, form a 
subset of IVLS = G. Table 3.3.1, then, gives the specific mapping of S × S into G. 
 
TABLE 3.3.1 Mapping int(pi,pj) of S into G 
 
     (p_i_,p_j_)   Interval (p_i_,p_j_)   Interval 
     (p_1_,p_1_)   e  (p_3_,p_1_)   z^-1^ 
     (p_1_,p_2_)   w  (p_3_,p_2_)   x^-1^ 
     (p_1_,p_3_)   z  (p_3_,p_3_)   e 
     (p_1_,p_4_)   y  (p_3_,p_4_)   z 
     (p_2_,p_1_)   w^-1^ (p_4_,p_1_)   y^-1^ 
     (p_2_,p_2_)   e  (p_4_,p_2_)   w^-1^ 
     (p_2_,p_3_)   z  (p_4_,p_3_)   z^-1^ 
     (p_2_,p_4_)   w  (p_4_,p_4_)   e 

 
[3.4] Next, for any pi in P, we observe two classes of triangles, t+(pi) and t-(pi), formed by 
mutually adjacent nodes on the graph of G(p);32 t+ triangles point upward and t- triangles point 
downward. We define the set of all such triangles, 
 

DEFINITION 3.4.1 TRI = {t+(pi),t-(pi) | pi is a member of P} 
 
and assign only one triangle of each type to any node pi in the graph. 
 

DEFINITION 3.4.2|TRI| = 2|P|. 
 
The node pi of origin serves as the “Einheit” of the triangle, which we abbreviate “h.” We describe 
the Einheit as being either even or odd, based on the parity of the least power of w (from e) that 
determines it.33 
 

DEFINITION 3.4.3 h is even if it is determined by an even least power of w. 
 
DEFINITION 3.4.4 h is odd if it is determined by an odd least power of w. 

 
Therefore, we may define an equivalence relation which partitions all such triangles into four 
equivalence classes. 

                                                           
32 These triangles are generally not Cohn functions in the sense of Lewin (1996, 182–84). Whereas rotated retrogrades 
of the interval series obtain by exchanging adjacent arguments in (at least) two different locations, the resultant series 
no longer describe closed (N.B.) shapes on the Tonnetz. For instance, using the T/I group, the interval series (T7,I11,I4) 
originating on pc 0 describes a C major triad. Taken as a composition, this series yields the identity element: I4I11T7 = 
T0. Now, by exchanging the first two arguments, we derive (I11,T7,I4). Its corresponding composition does not equal T0; 
rather, I4T7I11 = T10. (The compositions of the remaining two flips also yield non-identity elements.) In other words, this 
failed Cohn flip does not return us to our point of origin, pc 0. The triangles are Cohn functions only in instances in 
which x generates an involution, as in all commutative G’s, including those that use T operators exclusively. These 
may be Cohn-flipped in (at least) two different ways. 
33 In 3.4.3-4, we give the condition “least power of w” because, in certain G’s, any particular pi may be determined by 
both odd and even powers of w. For example, let |W| = 5. Now, if pi = w3(p), then pi = w8(p) is also true. Therefore, as 
an Einheit, we say that this pi is odd, as it is determined by an odd least power of w, w3. Such situations demonstrate the 
one-sided topology of the Klein-bottle. 
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DEFINITION 3.4.5 Let TRI be the relation: “points in the same direction as, and 
has the same Einheit parity as.” 

 
We label the four classes of triangles as follows: 
 

DEFINITION 3.4.6 The four TRI-classes of triangles: t+/e, t+/o, t-/e, t-/o. 
 
Figures 15a-b present these triangles for even and odd Einheiten, respectively; all even Einheiten 
appear on the left-hand side of the triangles, and all odd ones on the right. 
 
Figure 15. The four TRI-classes of triangles in Klein-bottle Tonnetze 
 
a) Triangles t+/e and t-/e         b) Triangles t+/o and t-/o 
 
            /\                                  /\ 
           v  ^                                ^  v 
          /    \                              /    \ 
         / t+/e \                            / t+/o \ 
        h--->----                            ---<----h 
         \ t-/e /                            \ t-/o / 
          \    /                              \    / 
           ^  v                                v  ^ 
            \/                                  \/ 

 
 
[3.5] In general, each of the four types of triangles is determined by a unique mod 3 function.34 
 

DEFINITION 3.5.1 t+/e = (x,x2(j+1)w,x2(j+1)-1w-1) : j = the power of x that 
determines h. 
 
DEFINITION 3.5.2 t+/o = (x-1,x2(j-1)w,x2(j-1)+1w-1) : j = the power of x that 
determines h. 
 
DEFINITION 3.5.3 t-/e = (x,x2(j+1)w-1,x2(j+1)-1w) : j = the power of x that 
determines h. 
 
DEFINITION 3.5.4 t-/o = (x-1,x2(j-1)w-1,x2(j-1)+1w) : j = the power of x that 
determines h. 

 
Furthermore, the interval series of any triangle determines its total GIS-interval content. 
 

DEFINITION 3.5.5 Let (a,b,c) be the interval series of a triangle. Then,  
(e,a,a-1,b,b-1,c,c-1) is the total GIS-interval content for that triangle. 

                                                           
34 Following Gollin (1998, 199–200), we consider, in a neo-Hauptmannian sense, the three nodes of any one of these 
triangles as the Einheit, Zweiheit, and Verbindung. For example, let pi be the Einheit of a t+/e triangle. Now, 3.5.1 gives 
x(pi) as the Zweiheit, and x2(j+1)w(x(pi)) as the Verbindung. Then, x2(j+1)-1w-1(x2(j+1)w(x(pi))) = e(pi) is again the Einheit. 
This procedure may also be used for the other three classes of triangles, using 3.5.2-4. 
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It is then easily demonstrated that any pair of t+ and t- triangles that share the same Einheit possess 
the same GIS-interval content. 
 

THEOREM 3.5.6 For any Einheit h, t+(h) and t-(h) have the same GIS-interval 
content. 

 
[3.6] In general, the various interval series of triangles in the same TRI-class vary with the powers of 
x that determine their Einheiten, except among triangles that relate by operations in the center of G. 
 

THEOREM 3.6.1 Triangles of the same TRI-class whose nodes are (left) 
transforms of each other by operations in CG (2.9.4) have the same interval series. 

 
Therefore, in commutative G’s, in which the center of G is G itself, all t+ triangles have the same 
interval series, as do all t- triangles; hence, by 3.5.6, all triangles in TRI have the same GIS-interval 
content. In non-commutative G’s, triangles of the same class that are not transforms of each other 
by operations in the center of G still relate significantly. As we will see in [5], when using the T/I 
group, they form weakly isographic Klumpenhouwer networks. 
 
[3.7] Another condition also gives rise to equivalent interval series among triangles of different 
TRI-classes. When w generates an involution, as in cases wherein w is an inversion operator, t+ 
and t- triangles sharing the same Einheit display the same interval series. Clearly, then, in cases in 
which both x and w generate involutions, such as when G is a four group, all triangles in TRI have 
the same interval series. 
 
[3.8] Before leaving the topic of interval series, we explore one more situation: instead of 
preserving a congruent shape—as with triangles formed by mutually adjacent nodes above—and 
varying pi, we will now study the results of preserving an interval series. This situation recalls 
Lewin’s (1987, 46-48) distinction between “transposition” and “interval-preserving operations,” 
and leads to a corresponding anti-isomorphism. In general, two segments with identical interval 
series are not congruent, as Figures 16a-b demonstrate for two segments with the following 
interval series (x,x2w,xw-1). The segments are congruent only when one relates to the other by 
some operation in the center of G. 
 
Figure 16. Two segments that use interval series (x,x2w,xw-1) 
 
a)          xw(p)            b)  w(p) 
           / \                     \   \ 
          /   \                       \    \ 
         /     \                         \     \ 
        /       \                           \      \ 
       e(p)------x(p)                       x(p)------x^2^(p) 

 
 
[3.9] We may, however, reconfigure the nodes to preserve congruency. Figure 12 shows a segment 
of a Tonnetz in which every t+ triangle has interval series (x,w,x-1w-1), and every t- triangle has 
(x,w-1,x-1w), regardless of their Einheiten parities.35 We will call this network H(p), which derives 
                                                           
35 Then, by 3.5.6, all triangles in Figure 12 have the same GIS-interval content. 
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from a particular group automorphism F of G. (Compare Figures 17 and 10.) Using the generators 
w and x of G and their product, Table 3.9.1 gives the mapping F of G(p) onto H(p), which 
indicates the anti-homomorphism condition F(ab) = F(b)F(a) for any a,b in G.36 
 
Figure 17. A portion of H(p) 
 
   x^-2^w^2^(p)__x^-1^w^2^(p)__w^2^(p) 
    \           / \           / \ 
     \         /   \         /   \ 
      \       /     \       /     \ 
       \     /       \     /       \ 
        \   /         \   /         \ 
         \ /           \ /           \ 
          xw(p)_________w(p)__________x^-1^w(p) 
           \           / \           / \ 
            \         /   \         /   \ 
             \       /     \       /     \ 
              \     /       \     /       \ 
               \   /         \   /         \ 
                \ /           \ /           \ 
                 x^-1^(p)______e(p)__________x(p) 
                  \           / \           / \ 
                   \         /   \         /   \ 
                    \       /     \       /     \ 
                     \     /       \     /       \ 
                      \   /         \   /         \ 
                       \ /           \ /           \ 
                        w^-1^(p)_____x^-1^w^-1^(p)__x^-2^w^-1^(p) 

 
 
TABLE 3.9.1 Anti-isomorphism of G(p) with H(p) 
 
     Member       Member 
     of G(p)  F   of H(p) 
     -------------------- 
       w(p)  -->  w(p) 
       x(p)  -->  x(p) 
      xw(p)  -->  x^-1^w(p) = wx(p) 
                  (by extension of 2.6.4-5) 
 
 
[3.10] We will now discuss certain potential relationships among abstract Klein-bottle Tonnetze. 
We recall the definition of isomorphic groups G and G′ in 2.12.1. We now apply that definition to 
our operational networks. 
 

DEFINITION 3.10.1 Let G′(p′) and G(p) be Klein-bottle Tonnetze, and let F be a 
bijective mapping F: F(G′(p′)) = G(p); p′ may or may not be a member of G(p). F 
is an isography of G′(p′) onto G(p) if G′ is isomorphic to G. 

 
                                                           
36 When using w = Im and x = Tn, this anti-isomorphism is precisely that between Klein-bottle Tonnetze and Perle 
cycles, to which we alluded in [1.2]. 
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It is important to emphasize that such mappings preserve not only group structure, but also graph 
structure: they take vertices to vertices, and edges to edges. 
 
[3.11] Following 2.12.2, certain G’s are non-trivially isomorphic to themselves. In terms of these 
group automorphisms, we may define group-automorphic isographies, or GA-isographies. 

 
DEFINITION 3.11.1 Let G′(p′) and G(p) be Klein-bottle Tonnetze, and let F be a 
bijective mapping F: F(G′(p′)) = G(p); p′ may or may not be a member of G(p). F 
is a GA-isography of G′(p′) onto G(p) if G′ = G. 
 

Finally, we note a special case of GA-isography, in which p′ is a member of G(p). This F is a graph 
automorphism, or autography. 
 

DEFINITION 3.11.2 Let G′(p′) and G(p) be Klein-bottle Tonnetze, and let F be a 
bijective mapping F: F(G′(p′)) = G(p); p′ is a member of G(p). F is an autography 
of G′(p′) onto G(p) if G′ = G. 

 
 
[4] KLEIN-BOTTLE TONNEZTE USING COMMUTATIVE GIS’S 
 
[4.1] We will now construct a pitch-class Klein-bottle Tonnetz using operations from a commutative 
GIS.37 Specifically, we will now give the intervals defined above as w, x, etc., as transpositions in 
the form Tn. Clearly, the T group, being cyclic, is commutative, as TnTm = Tm+n = Tn+m = TmTn. We 
require then two Tn operators, w and z, whose squares are equal; and, from this w and z, we obtain 
the generators w and x = z-1w of a Klein-bottle group G (2.8.2). One such example uses w = T2 and 
z = T8; each operation performed twice yields y = T4. G may be generated, then, by w = T2 and x = 
z-1w = T4T2 = T6.38 Thus, G = ��T2�,�T6�� = {T0,T2,T4,T6,T8,T10}. 
 
[4.2] Figure 18 shows a portion of an abstract pitch-class Klein-bottle Tonnetz which is generated 
by w = Tm and x = T6, and which uses p as a pitch-class point of origin. Moreover, by 2.6.5, z = xw 
= T6Tm = Tm+6. As such, z2 = T2(m+6) = T2m = w2, via 2.5.1. 
 
Figure 18. A portion of an abstract pitch-class Tonnetz generated by w and x in a commutative G 
 
          2m+p = 2(m+6)+p 
              / \ 
             /   \ 
           m+p__m+6+p 
           / \   / \ 
          /   \ /   \ 
        -6+p___p____6+p 
          \   / \   / 
           \ /   \ / 
         -m+p__-(m+6)+p 
             \   / 
              \ / 
         -2m+p = -2(m+6)+p 

                                                           
37 Henceforth, all pitch-class operations will be performed mod 12. 
38 Furthermore, following 2.11.1, all x’s in commutative Klein-bottle Tonnetze generate involutions. Accordingly, x in 
this example is T6, the only Tn operator with that property. 
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Recalling Figure 9, Figure 19 uses members of this Tonnetz to demonstrate the fundamental region 
of the Klein-bottle group. 
 
Figure 19. The fundamental region of G in Figure 18 
 
          (T_6_) 
       m+p-->-(m+6)+p = (6-m)+p 
        \       \ 
  (T_m_) ^       ^ (T_m) 
          \       \ 
           p---<--6+p 
              (T_6_) 
 
 
Both Tm’s in Figure 19 operate from bottom to top. However, the upper T6 operates from left to right, 
whereas the lower T6 operates from right to left,39 providing the necessary identifications of sides. 
 
[4.3] Before discussing pitch-class node content, we observe a few features of Figure 18 and its 
group of operations. First, as we noted in [3.6], all triangles in the figure possess the same GIS-
interval content, {T0,T0,Tm,T-m,T-(6+m),T6+m}. Any triangle with this particular GIS-interval content 
forms a member of the same T/I set-class,40 and also relates by either GIS-transposition or GIS-
inversion to every triangle in the figure.41 All triangles pointing in the same direction (t+ or t-) are 
transpositionally related to each other as pcsets, and are also GIS-transpositionally related to each 
other as networks. Triangles pointing in the opposite directions are inversionally related as pcsets 
and networks. 
 
[4.4] We will now examine issues of node content. Definition 3.1.2 determines the number of 
distinct nodes in a T-only Tonnetz. In fact, since the T group, as a cyclic group, is simply 
transitive,42 the earlier formula given in 2.10.2 suffices. Then, as |X| = 2, we need only determine 
whether or not |W ∩ X| > 1 to arrive at |G|. 
 

THEOREM 4.4.1 Given w = Tm and x = T6 (by 2.11.1), X ⊆ W if there exists some 
integer i, such that mi = 6. 

 
[4.5] The number of distinct P-sets on which any one T-only G acts is precisely the index of G in 
the full T group. We call this set of P-sets a PG set. 

 
DEFINITION 4.5.1 PG = {G(p) | p is a pitch-class integer}. 

 

                                                           
39 Of course, being an involution, x in the graph of a commutative G may be said to operate both right-to-left and left-
to-right. Thus, as we stated in Note 6, this fundamental region actually degenerates into a torus. However, since it 
satisfies the relations for the Klein-bottle group (2.8.2), we include it in the general category of “Klein-bottle Tonnetze.” 
40 However, as we will see below, such networks do not necessarily contain all the trichords which belong to a 
particular set-class. 
41 Lewin (1997) discusses GIS-transposition and inversion. 
42 Lewin (1987, 157) defines the simply transitive property as follows: “Given any elements s and t of S, then there 
exists a unique member OP of STRANS such that OP(s) = t.” We note that, in contrast to the T-only group, the full T/I 
group is not simply transitive (when it is acting on pcs, not pcsets). 
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The order of PG for T-only G’s is given as follows: 
 

DEFINITION 4.5.2 |PG| = 12 / |G| (for all commutative G’s). 
 
In other words, we may generate the members of PG by applying to p the right cosets of G in the 
full T group (or left cosets, as G is commutative). 
 
[4.6] We return now to our example from [4.1], in which w = T2, x = T6, and z = T8. Figure 20 
shows a Klein-bottle Tonnetz that uses this G and p = 0 as point of origin. 
 
Figure 20. A pitch-class Tonnetz generated by w = T2 and x = T6, using p = 0 
 
              4_____10___(4) 
             / \   / \   / 
            /   \ /   \ / 
           8_____2____(8) 
            \   / \   / \ 
             \ /   \ /   \ 
              0_____6____(0) 
             / \   / \   / 
            /   \ /   \ / 
          (10____4____(10)) 

 
 
In this Tonnetz, all triangles possess the GIS-interval content {T0,T6,T2,T10,T4,T8}, and are 
accordingly members of set-class 3-8[026]. 
 
[4.7] As p varies among the twelve pitch-classes, we discover one other P-set on which the 
operations of this G may act: {1,3,5,7,9,11}, the set of odd pitch-classes. Figure 21 shows the 
network that results from G(p), where p = 1. Like Figure 20, it consists of a tessellation of triangles 
that belong to set-class 3-8[026]. Moreover, each triangle possesses the same GIS-interval content 
as those of Figure 20. 
 
Figure 21. A pitch-class Tonnetz generated by w = T2 and x = T6, using p = 1 
 
              5_____11___(5) 
             / \   / \   / 
            /   \ /   \ / 
           9_____3____(9) 
            \   / \   / \ 
             \ /   \ /   \ 
              1_____7____(1) 
             / \   / \   / 
            /   \ /   \ / 
          (11____5____(11)) 
 
 
[4.8] In both Figures 20 and 21, G contains six members: the transposition operators with even 
indices. Therefore, by 4.5.2, we find here 12/6 = 2 distinct P-sets, the even and odd pitch-classes. 
Hence, for this G, PG = {(0,2,4,6,8,10),(1,3,5,7,9,11)}. 
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[4.9] The beginning of no. 8, “Gargoyles,” from George Crumb’s Makrokosmos, Vol. II, presents 
us with an analytical example. The piece opens with a series of 3-5[016] trichords in both hands, 
the left hand’s pcsets being inversionally related to those of the right hand. (See Example 3.) These 
pitch-class sets may be plotted as subnetworks on a T-only Klein-bottle Tonnetz. The entire 
network’s underlying graph may be constructed using w = T5 and z = T11; then, w2 = z2 = T10. 
Using 2.8.2, we give the generators of this G as w = T2, and x = z-1w = T6. Then, application of this 
group of operators to pitch-class 3 obtains the Klein-bottle Tonnetz shown in Figure 22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Klein-bottle Tonnetz showing 3-5[016] trichords in the opening of “Gargoyles” 
 
  3---9---3 
 / \ / \ / 
10--4---10 
 \ / \ /H\ 
  5---11--5 
 /F\ /G\ /(F) 
0---6---0 
 \ / \D/E\ 
  7---1---7 
 / \B/ \C/ 
2---8---2 
 \ / \A/ \ 
  9---3---9 
 
 

[4.10] Unlike the earlier Schoenberg example (Example 1a), the inversion operators present in this 
example are not part of the passage’s overall growth process. Consequently, we do not require In 
members in G to model our interpretation of the music. Rather, the inversionally related trichords 
between the hands move in parallel motion, suggesting a type of contextual inversion operation 
that is inherent in the upward- and downward-pointing triangles of the figure.43 As we pointed out 
in [4.3], a T-only Klein-bottle Tonnetz includes inverted, as well as non-inverted, forms of a pcset. 
 
 
                                                           
43 By graphic analogy to the Oettingen/Riemann Tonnetz, the trichords in the two hands of each gesture in the Crumb 
example relate by the neo-Riemannian operator PLP, which, on the former network, yields the hexatonic pole. 
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[4.11] As a result, in addition to pitch-classes, we may also model operations among Example 3’s 
pitch-class sets on Figure 22. For purposes of illustration, we will consider only those trichords 
labeled A-H in the example. (These trichords are plotted on the figure.) Considering first only the 
right hand, we see that trichord B obtains by applying w = T5 to trichord A; accordingly, we may 
perform the same glide reflection to the triangle marked A to reach B, as we did to pitch-class 3 to 
reach 8. Similarly, trichord C obtains from A via z = T11, which also carries pitch-class 3 to 2. 
Moreover, both glide reflections performed twice, w2 = z2 = y, carry trichord A to D, or pitch-class 
3 to 1. Furthermore, the trichords of the left hand are related in precisely the same way. Trichord E 
moves to F via w, to G via z, and to H via y. 
 
[4.12] We need not limit ourselves to trichords, and indeed, a more natural way of looking at the 
passage might be in terms of the 6-38[012378] hexachords formed by taking the two hands of each 
gesture together. Figure 23 shows these hexachords as parallelograms, incorporating the two 
trichords of each gesture. We may easily see the two glide reflections which carry the A/E 
parallelogram to B/F and C/G, both of which squared yield a translation to D/H. 
 
Figure 23. Hexachords in the opening of “Gargoyles” 
 
            10 
           /H\ 
  11  5   11  5 
 /G\ /F\ /   / 
6   0   6   0 
 \   \   \D/E\ 
  1   7   1   7 
   \C/ \B/   / 
    2   8   2 
         \A/ 
          3 
 
 
[5] KLEIN-BOTTLE TONNEZTE USING NON-COMMUTATIVE GIS’S 
 
[5.1] In [3], we constructed an abstract Klein-bottle Tonnetz using intervals from a generalized, 
non-commutative GIS. Now we are ready to consider the pitch-class representations of these types 
of networks, using operators from the traditional, non-commutative T/I group.44 We will also 
present an analytical example that uses a non-commutative, generalized quaternion T/M subgroup.  
 
[5.2] As before, we require the relation w2 = z2 (2.5.1) to arrive at the proper graphic identifications 
for a Klein-bottle’s fundamental region. Furthermore, using the dihedral T/I group, all triangles 
formed by mutually adjacent nodes in the graphs of such G’s must incorporate two In operators and 
one Tn operator. Otherwise, Condition (A) of Lewin’s (1987, 26) definition of a GIS, which 
guarantees the transitive property, is not met, pace O’Donnell’s (1998, 56-60) concepts of well-
formed and practical K-nets as applied to trichords. 
 
[5.3] We find two categories of these Tonnetze. The first includes those in which w and z are both 
In operators, and x is a Tn operator. The second includes those in which x and either w or z, but not 
                                                           
44 In this section, we will also sometimes refer to the T/I group using the notation TTO24, following Morris (1987). 



 

 

24 

both, are In operators, and the other is a Tn operator.45 
 

DEFINITION 5.3.1 Category 1: x is of the form Tn. 
 
DEFINITION 5.3.2 Category 2: x is of the form In. 

 
In either event, the orders of W and Z are always equal, and both are involutions. 
 

THEOREM 5.3.3 In any Klein-bottle Tonnetz which incorporates both Tn and In 
operators, |W| = |Z| = 2. 

 
[5.4] Figures 24a-c show portions of abstract pitch-class Tonnetze that use Tn and In operators, and 
their fundamental regions. Figure 24a models Category 1,46 and Figures 24b-c show the two 
possibilities for Category 2. 
 
Figure 24a. A portion of an abstract T/I Tonnetz using w = Im and x = Tn, and its fundamental region 
(Category 1) 
 
     a)       p             b)       T_n_ 
             / \                (m-p)-->--((n+m)-p) 
            /   \                   \       \ 
         m-p____(n+m)-p         I_m_ ^       ^ I_2n+m_ 
          / \   / \                   \       \ 
         /   \ /   \                  (p)--<---(n+p) 
     -n+p_____p_____n+p                   T_-n_ 
         \   / \   / 
          \ /   \ / 
         m-p____(n+m)-p 
            \   / 
             \ / 
              p 
 
Figure 24b. A portion of an abstract T/I Tonnetz using w = Im and x = In, and its fundamental region 
(Category 2) 
 
     a)       p             b)       I_n_ 
             / \                (m-p)-->--(6+p) 
            /   \                   \       \ 
         m-p____6+p             I_m_ ^       ^ I_m_ 
          / \   / \                   \       \ 
         /   \ /   \                  (p)--<---(n-p) 
      n-p_____p_____n-p                   I_n_ 
         \   / \   / 
          \ /   \ / 
         m-p____6+p 
            \   / 
             \ / 
              p 
 
                                                           
45 We note that all G’s in Category 2, as well as all order 4 G’s in Category 1, are, in fact, commutative. However, since 
they consist of both Tn and In operators, which do not normally commute, we include them in this section. 
46 In Figure 24a, using the identifications of the sides from [2.7], the edge (interval) represented by (p,m-p) maps onto 
that of (n+p,(n+m)-p) via a conjugation of w by x (i.e., Tn(Im)T-n = I2n+m), and (m-p,(n+m)-p) maps onto (n+p,p) via a 
conjugation of x by z-1 (i.e., In+m(Tn)In+m = T-n). Similar identifications may be made for Figures 24b–c. 
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Figure 24c. A portion of an abstract T/I Tonnetz using w = T6 and x = In, and its fundamental region 
(Category 2) 
 
     a)       p             b)       I_n_ 
             / \                (6+p)-->--((n-6)-p) 
            /   \                   \       \ 
         6+p____(n-6)-p         T_6_ ^       ^ T_6_ 
          / \   / \                   \       \ 
         /   \ /   \                  (p)--<---(n-p) 
      n-p_____p_____n-p                   I_n_ 
         \   / \   / 
          \ /   \ / 
         6+p____(n-6)-p 
            \   / 
             \ / 
              p 
 
[5.5] Taken as Klumpenhouwer networks, all triangles in any such graph are isographic to each 
other. First, as a consequence of W’s being an involution, the interval series of any t+ and t- 
triangles that share a common Einheit are equivalent. Therefore, we need only consider here one or 
the other; we will arbitrarily choose t+ triangles. Now, in Category 1 Tonnetze, all t+/e triangles are 
positively isographic to each other, since, for any two t+/e triangles whose Einheiten are Tnj(p) and 
Tn(j+k)(p), 3.5.1 gives respectively the following interval series: (Tn, I2nj+2n+m, I2nj+2n-n+m) and (Tn, 
I2nj+2n+m+2nk, I2nj+2n-n+m+2nk). The Tn operators are equivalent in the two series, and both In operators 
of the second are 2nk greater than those of the first. Hence, the latter triangle is isographic to the 
former via the outer automorphism �T2nk� of the T/I group, or the inner automorphism [Tnk]. 
Furthermore, all t+/e and t+/o triangles are negatively isographic to each other. For example, a t+/e 
triangle with the Einheit Tnj(p) and interval series (Tn, I2nj+2n+m, I2nj+2n-n+m), and a t+/o triangle with 
Einheit Im+n(j+k)(p) and interval series (T-n, I2nj+2nk-2n+m, I2nj+2nk-n+m) (by 3.5.2) are isographic via the 
outer automorphism �I2(nk+m)�, or inner automorphism [Ink+m]. We could work similar calculations 
for Category 2, but as |W| = |X| = 2 in all these Tonnetze, their respective constituent triangles all 
possess the same interval series, as we saw in [3.7]. 
 
[5.6] Let us now proceed to issues of node content. We determine the number of distinct pitch-
class nodes in P by using 3.1.2. In T/I Klein-bottle Tonnetze, two possibilities for |W(p)| exist: 1 or 
2. We give here the circumstances in which |W(p) ∩ X(p)| = 2, starting with Category 1. 
 

THEOREM 5.6.1 Given w = Im, and x = Tn (Category 1), W(p) ⊆ X(p) if there 
exists some integer i, such that ni+p = m-p. 

 
So, |W(p) ∩ X(p)| > 1 only when W(p) ⊆ X(p), and |W(p)| = 2. 
 
[5.7] Next, we consider examples of |W(p) ∩ X(p)| > 1 in Category 2 Tonnetze, recalling that, in 
these networks, either x or z is T6 (by 5.3.3). We may eliminate all examples in which z = T6. 
     

THEOREM 5.7.1 If z = T6 (Category 2), then |W(p) ∩ X(p)| = 1. 
 
Therefore, for |W(p) ∩ X(p)| to be greater than 1 in Category 2 Tonnetze, w must be T6. Now, by 
using the same argument as 5.6.1, but exchanging the Tn and In forms of w and x, we observe the 
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situation in which X(p) ⊆ W(p). 
 

COROLLARY 5.7.2 Given w = Tn and x = Im (Category 2), X(p) ⊆ W(p) if there 
exists some integer i, such that ni+p = m-p. 

 
Thus, |W(p) ∩ X(p)| > 1 in Category 2 only when X(p) ⊆ W(p), and |X(p)| = 2. The remarkable 
conclusion of 5.6.1 and 5.7.1-2 is that the same G may produce P-sets of different cardinalities. 
 
[5.8] From the above discussion, it is implied that the number of distinct P-sets on which the same 
G may act is not necessarily given by the index of G in the T/I group, as it was for the simply 
transitive examples in [4]. Let us now examine the situations in which we find degenerate P-sets 
under right cosets of G. First, we start with a few definitions. 
 

DEFINITION 5.8.1 PG = {G(p) | p is a pitch-class integer} (same as 4.5.1). 
 

PG is the set of all distinct P-sets on which a particular G may act. RG, then, is the set of all right 
cosets of that G in the T/I group. 
 

DEFINITION 5.8.2 RG = {Gci | c is a member of TTO24, and i is an integer mod 
[TTO24 : G]}. 

 
Using the members of RG applied to p, we give the resulting set of degenerate P-sets as DG. 
 

DEFINITION 5.8.3 DG = {Gci(p) | Gci(p) = Gcj(p), and i is not equal to j; Gci, Gcj 
are members of RG}. 

 
Then, the cardinality of PG is the difference of the order of DG from the index of G in the T/I group. 

 
DEFINITION 5.8.4 |PG| = [TTO24 : G] - |DG|. 

 
[5.9] For two distinct cosets to produce degenerate P-sets, certain relations have to be met. These 
situations are given below in the form of lemmata; the interested reader may work their proofs, 
which are eliminated here for reasons of space. We start with Category 1, in which w = Im and x = Tn. 
 

LEMMA 5.9.1 If Gci = G(Tx), and Gcj = G(Tx′), then Gci(p) = Gcj(p) if there exists an 
integer i, such that (ni+x)+p = x′+p, and/or ((m-ni)-x)-p = x′+p. 

 
LEMMA 5.9.2 If Gci = G(Tx), and Gcj = G(Iy′), then Gci(p) = Gcj(p) if there exists 
an integer i, such that (ni+x)+p = y′-p, and/or ((m-ni)-x)-p = y′-p. 

 
LEMMA 5.9.3 If Gci = G(Iy), and Gcj = G(Iy′), then Gci(p) = Gcj(p) if there exists 
an integer i, such that (ni+y)-p = y′-p, and/or ((m-ni)-y)+p = y′-p. 
 
LEMMA 5.9.4 If Gci = G(Iy), and Gcj = G(Tx′), then Gci(p) = Gcj(p) if there exists 
an integer i, such that (ni+y)-p = x′+p, and/or ((m-ni)-y)+p = x′+p. 
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For Category 2, we may similarly determine the degenerate P-sets by exchanging the Tn and In 
forms of w and x from Category 1. In conclusion, we observe that, using G’s with both Tn and In 
operators, not only may the same G act on P-sets of different sizes, but also the number of these P-
sets is not necessarily the index of G in the full T/I group. 
 
[5.10] Let us examine one such Klein-bottle Tonnetz, that which uses w = I7, x = T3, and p = 3 
(Category 1). (See Figure 25.) 
 
Figure 25. The network of w = I7, x = T3, and p = 3 
 
  (3---6---9---0--(3)) 
  / \ / \ / \ / \ / 
 4---7---10--1--(4) 
  \ / \ / \ / \ / \ 
   3---6---9---0--(3) 
 
 
This network is essentially the same as the one presented in [1.4] (Figure 2) to model trichords in 
the beginning of “Nacht” from Pierrot Lunaire, when we alluded to its being a Klein-bottle Tonnetz. 
 
[5.11] We note that all triangles in Figure 25 belong to the same set-class, 3-3[014]; however, not 
all triangles possess the same GIS-interval content. Only triangles related by some member in the 
center of G (3.6.1), or which share an Einheit with these triangles (3.5.6), have the same interval 
series. The center of this particular G is �T6�. Therefore, in the Schoenberg example, trichords that 
are in corresponding positions within the canonic framework (canon at T6) have the same GIS-
interval content. 
 
[5.12] To generate a related Tonnetz, using the same G, in which all triangles possess the same 
interval series, and therefore the same GIS-interval content, we permute the nodes of G(p) 
according to the anti-homomorphism in 3.9.1; we label the resulting network H(p). Figure 26 
shows this action on Figure 25. 
 
Figure 26. H(p), where w = I7, x = T3, and p = 3 
 
  (3-->6-->9-->0->(3)) 
  / \ / \ / \ / \ / 
 4<--1<--10<-7<--(4) 
  \ / \ / \ / \ / \ 
   3-->6-->9-->0->(3) 
 
 
Now, all triangles do indeed have the same interval series (T3,I4,I7), hence the same GIS-interval 
content. However, only those triangles related by some member in the center of G, or which share 
an Einheit with those triangles, belong to the same set-class. Otherwise, all triangles are GISZ-
related.47 In fact, this Tonnetz demonstrates clearly the topology of the Klein bottle. Note, in 
particular, that all parallel diagonal edges in any one row represent the same In operator, and the 
direction of Tn arrows reverses in alternate rows. 

                                                           
47 Lewin (1997) discusses the GISZ-relation in the context of commutative and non-commutative GIS’s. 
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[5.13] As Figure 25’s G is of order 8, it has 24/8 = 3 right cosets in the T/I group; in other words, 
[TTO24 : G] = 3. Figures 27a-c show the three networks that derive from applying these cosets to p = 3. 
 
Figure 27. The three right cosets Gc of G applied to p = 3 
 
a) c is a member of   b) c is a member of   c) c is a member of 
 
T_0_,T_3_,T_6_,T_9_,  T_1_,T_4_,T_7_,T_10_  T_2_,T_5_,T_8_,T_11_ 
I_1_,I_4_,I_7_,I_10_  I_0_,I_3_,I_6_,I_9_   I_2_,I_5_,I_8_,I_11_ 
 
 
 (3---6---9---0--(3))   (4---7---10--1--(4)) 
 / \ / \ / \ / \ /      / \ / \ / \ / \ / 
4---7---10--1--(4)     3---6---9---0--(3)   (2---5---8---11-(2) 
 \ / \ / \ / \ / \      \ / \ / \ / \ / \     \ / \ / \ / \ / \ 
  3---6---9---0--(3)     4---7---10--1--(4)    5---8---11--2--(5) 
 
 
The P-sets of Figures 27a and b are equivalent, hence |DG| = 1 (5.8.3). Therefore, in this case, |PG| = 
[TTO24 : G] - |DG| = 2 (5.8.4). 
 
[5.14] In [1.4], our analysis of the opening canon in “Nacht” (Example 1a) fails to address two 
important features of the passage. First, it does not address the relationship between set-classes 3-
3[014] and 3-11[037]. However, the excerpt’s melodic material derives largely from the former, 
while the harmonic material uses the latter. Second, it does not address the presence of the pitch-
class 8 in m. 3, the one note outside the prevailing octatonic collection. Both these issues may be 
explored in terms of a T/M Klein-bottle Tonnetz. 
 
[5.15] Figure 28 shows one such network, generated here by w = T7M and x = T4; then, z = xw = 
T11M. In the figure, we plot various tetrachords from the excerpt, labeled A though D (see Example 4). 
 
Figure 28. Network of melodic and harmonic tetrachords in the opening canon of “Nacht” 
 
     (6)  10  2   6   10     
      | 
      | \ 
      |  \ 
      3 A 7   11  3   7 
       \  |          /| 
        \ |         / | 
         \|        /  | 
      0   4   8   0 D 4 
      |\          |  / 
      | \         | / 
      |  \        |/ 
      9 C 1   5   9   1 
       \  |          /| 
        \ |         / | 
         \|        /  | 
      6  10   2   6 B 10 
      |\          |  / 
      | \         | / 
      |  \        |/ 
      3 A 7   11  3   7 
       \  | 
        \ | 
         \| 
      0   4   8   0   4 
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Subnetwork A presents the opening melodic gesture, {4,7,3,6}. On beat 3 of m. 1, this gesture 
restates canonically in the right hand with C = {10,2,9,1}, initiating a T6-cycle (A C [A]). Each of 
these tetrachords forms a member of set-class 4-3[0134], which may be viewed as the union of two 
inversionally related 3-3[014] trichords.  
 
[5.16] Each statement of the melodic motive overlaps with a subsequent one, giving us parallel 
perfect fifths, leading to a harmonic accumulation. The first of these harmonic arrivals is B = 
{3,10,6,1}. It is a member of set-class 4-26[0358], which consists of two inversionally related 
triads. The next accumulation is D = {9,4,1,7} in m. 2. These harmonic events also spell a T6-cycle 
on subnetworks (B D [B]). Moreover, B is the T7M-transform of A = {3,4,6,7}, and, accordingly, 
the latter’s semitones transform into the former’s perfect fifths. Subnetwork B, then, also relates to 
C via T7M, C to D, and so forth. Therefore, we observe a complete T7M-cycle, (A B C D [A]), in 
the example, shown here as a cycle of glide reflections. 
 
[5.17] The above T7M-cycle acts on the octatonic collection (0,1,3,4,6,7,9,10), which does not 
include the passage’s final pitch-class, 8. Its presence here can be explained in terms of another 
TnM-cycle, which is only implied in the excerpt. We may reveal an incomplete, hidden repetition 
of the melodic and harmonic motives, beginning on the G� downbeat of m. 2: E = {6,9,[5],8} and F 
= {[5],0,8,3}, respectively. (See Example 5, segments E and F.)  
 
 
 
 
 
 
 
 
 
Pitch-class 5 never appears in the passage; hence, its inclusion here is merely conjectured. The 
metric displacement of pitch-class 8 in m. 3, then, suggests a written-out ritardando, signaling the 
end of the phrase. Subnetwork E relates to F via T11M, initiating another TnM-cycle, (E,F,G,H). 
Example 5 shows a reconstruction of this entire cycle, if it had been fully realized in the music, and 
Figure 29 plots its tetrachords E-H on the same network as above. The product of this T11M-cycle 
and the earlier T7M-cycle forms a Klein-bottle-group K with which we may analyze the entire 
passage,48 accounting particularly for those aspects not addressed in our earlier analysis. 
 
                                                           
48 This particular group, K = {Tm,TnM | m is even, n is odd}, is isomorphic to the generalized quaternion group of order 
12, Q12 (see Note 17). Accordingly, it contains three non-commuting order 4 subgroups, �T1M� = �T7M�, �T3M� = �T9M�, 
and �T5M� = �T11M�, which intersect in the order 2 center of the group, �T6�. 
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Figure 29. T11M-cycle in the reconstructed hidden repetition 
 
  5  (9)  1   5   9 
     /| 
    / | 
   /  | 
 (2)H(6)  10 (2)  6 
  |  /        |\ 
  | /         | \ 
  |/          |  \ 
(11)  3   7 (11)G 3 
     /|        \  | 
    / |         \ | 
   /  |          \| 
  8 F 0   4   8   0 
  |  /        |\ 
  | /         | \ 
  |/          |  \ 
 (5)  9   1  (5)E 9 
               \  | 
                \ | 
                 \| 
  2   6   10  2   6 
 
 
[5.18] Our new analysis of the passage can also address certain aspects of recursion in the 
excerpt. Specifically, we can find relations between the interpretation of certain prominent pitch-
class sets in the excerpt and a supernetwork on subnetworks A-H above. Figure 30 shows one 
such pitch-class set from mm. 1-2: J = {3,6,7,10}, a member of 4-17[0347]. Like the members A, 
C, E, and G of set-class 4-3[0134] above, J is the union of two inversionally related 3-3[014] 
trichords. Similarly, like B, D, F, and H from 4-26[0358], J also contains both a major and a 
minor triad. The figure shows an interpretation of this pitch-class set, using operators from our 
Klein-bottle group.  
 
Figure 30.  
         a)                       b) 
 
           T_8_                    [T_8_] 
         6<----10               E=G<----A=C 
         ^     ^                  ^     ^ 
   T_3_M |  J  |T_11_M    [T_11_M]|  N  |[T_7_M] 
         |     |                  |     | 
         3<----7                F=H<----B=D 
           T_8_                    [T_8_] 
 
 
Figure 30b, then, interprets subnetworks A-H. The correspondence of the two figures derives 
from an inner automorphism of our Klein-bottle group. Specifically, this automorphism is 
accomplished by a conjugation of K by T4. In other words, T4(K)T8 gives us the following 
mapping of elements of K. 
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TABLE 5.18.1. Mapping of K onto T4(K)T8 
 
         Elements   Conjugation   Elements 
         of K       by T_4_       of K^T_4_^ 
         ---------------------------------- 
         T_0_          -->        T_0_ 
         T_2_          -->        T_2_ 
         T_4_          -->        T_4_ 
         T_6_          -->        T_6_ 
         T_8_          -->        T_8_ 
         T_10_         -->        T_10_ 
         T_1_M         -->        T_9_M 
         T_3_M         -->        T_11_M 
         T_5_M         -->        T_1_M 
         T_7_M         -->        T_3_M 
         T_9_M         -->        T_5_M 
         T_11_M        -->        T_7_M 
 
[5.19] Under conjugation by T4, the operators of Figure 30a map one-to-one onto those that 
determine the hyper-operators of 30b. Furthermore, (XT_4)(YT_4) = (XY)T_4, for any X and Y in 
K. Therefore, the two groups—one of operators, and the other of hyper-operators—are related to 
each other, showing again a remarkable degree of consistency among the various levels of the 
excerpt. Pitch-class 8 is of particular interest in this analysis; while initially seeming aberrant, its 
presence ultimately made possible the recursion between the pitch-class-network level and the 
supernetwork level. 
 
 
[6] K-NET ISOGRAPHIES AMONG KLEIN-BOTTLE TONNETZE 
 
[6.1] We have already discussed briefly the network isographies among triangles formed by 
mutually adjacent nodes in Klein-bottle Tonnetze. Now we turn our attention to the notion of entire 
T/I Klein-bottle Tonnetze as Klumpenhouwer networks, and the various isographies which relate 
them to each other. 
 
[6.2] Network isographies obtain from automorphic mappings of a group of operations onto 
itself. Of particular relevance here are the T and T/I groups, as they are the most studied in the 
literature on Klumpenhouwer networks.49 We find four categories of these automorphisms: �Tj�, 
�Mj�, �MIj�, and �Ij�.50 
 

DEFINITION 6.2.1 �Tj�Tn = Tn; �Tj�In = In+j. 
 

                                                           
49 Lewin (1990, Appendix B) describes a system for including TnM and TnMI operations in Klumpenhouwer networks, 
including a subgroup, RECURSE, of Aut(TTO48) that models such networks’ isographies recursively. However, in this 
section, we will not pursue M and MI operations further than their implied presence in Aut(TTO24). 
50 Within this section, angle brackets surrounding a twelve-tone operator do not signify a cycle of this operator. Rather, 
following Klumpenhouwer’s (1998, 88) notation, they indicate some outer automorphism of the appropriate group of 
operations. The four types of these automorphisms of the T/I group are defined using a different notation in Lewin 
(1990, 88). Lewin’s F�u,j� function maps the group according to the following scheme: under F�u,j�, Tn operators map 
onto Tun operators, and In operators map onto Iun+j operators. The only values for u which obtain automorphisms of the 
T/I group are 1, 5, 7, and 11: the order 12 coprimes in Z12. Here, we indicate Lewin’s F�1,j� as �Tj�, F�5,j� as �Mj�, F�7,j� 
as �MIj�, and F�11,j� as �Ij�. 
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DEFINITION 6.2.2 �Mj�Tn = T5n; �Mj�In = I5n+j. 
 
DEFINITION 6.2.3 �MIj�Tn = T7n; �MIj�In = I7n+j. 
 
DEFINITION 6.2.4 �Ij�Tn = T11n; �Ij�In = I11n+j. 

 
We refer to these automorphisms as hyper-operators, which may form supernetworks. We also say 
that the hyper-operator �Tj� is determined by the TTO Tj, or that Tj is the determinant of �Tj�; and 
so forth with �Mj� and Mj, �MIj� and MIj, and �Ij� and Ij. 
 
[6.3] Concerning G’s in the commutative T group, these labels refer to the following mappings, 
regardless of the value of j: �Tj�Tn = Tn, �Mj�Tn = T5n, �MIj�Tn = T7n, and �Ij�Tn = T11n. In other words, 
two T Klein-bottle Tonnetze are isographic to each other if all Tn intervals between nodes in one 
relate to those of the other by multiplication by 1, 5, 7, or 11. We will not pursue a detailed study of 
GA-isography in T Klein-bottle Tonnetze. For our purposes, it does not lead to a satisfying result, as 
we cannot reveal a convincing recursive supernetwork of networks. Clearly, as any �Tj� hyper-
operator (6.2.1) maps some Tn member of G onto itself, all �Tj�‘s are merely identity mappings in this 
context. Therefore, they do not form analogous structures between nodes and networks-as-nodes. 
 
[6.4] In contrast, GA-isographies among T/I Klein-bottle Tonnetze are of interest. The �Tj� and �Ij� 
hyper-operators have fully corresponding analogues in G’s Tn and In operators. In fact, as we will 
now demonstrate, any T/I G determines a set of networks that forms at least one supernetwork 
whose group of hyper-operators is isomorphic to G itself. We will now investigate that situation. 
 
[6.5] Specifically, each T/I G forms as many distinct networks as it has pairs of generators (w,x). 
For Category 1 Tonnetze, this number is equal to the number of automorphic mappings of G onto 
itself, via the forty-eight hyper-operators. (We will address Category 2 G’s below in Note 51.) We 
now define the set HYP of all hyper-operators that map G onto itself. 
 

DEFINITION 6.5.1 HYP = {�h� | �h�G = G}. 
 
Because these automorphisms map not just G, but the entire T/I group onto itself, certain different 
members of HYP may induce equivalent mappings of a particular G onto itself. For example, let G = 
{T0,T4,T8,I1,I5,I9}. Table 6.5.2 shows the elementwise automorphic mapping of this G onto itself 
under �I2�. 
 
TABLE 6.5.2 Mapping of �I2�G onto G 
 
    Member         Member 
    of G   <I_2_>  of G 
    --------------------- 
    T_0_   <-->    T_0_ 
    T_4_   <-->    T_8_ 
    T_8_   <-->    T_4_ 
    I_1_   <-->    I_1_ 
    I_5_   <-->    I_9_ 
    I_9_   <-->    I_5_ 
 
Table 6.5.3 shows the same mapping under �M8�. 
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TABLE 6.5.3 Mapping of �M8�G onto G 
 
    Member         Member 
    of G   <M_8_>  of G 
    --------------------- 
    T_0_   <-->    T_0_ 
    T_4_   <-->    T_8_ 
    T_8_   <-->    T_4_ 
    I_1_   <-->    I_1_ 
    I_5_   <-->    I_9_ 
    I_9_   <-->    I_5_ 
 
In terms of G alone, these two mappings are obviously the same. In total, for this G, we find only 
six distinct mappings: (1) �T0� = �MI6�, (2) �T4� = �MI10�, (3) �T8� = �MI2�, (4) �I2� = �M8�, (5) �I6� = 
�M0�, �I10� = �M4�. We will call the set of distinct mappings of any G onto itself MAP. 
 

DEFINITION 6.5.4 MAP = {F | F is an automorphic mapping of G onto G, wherein 
Tn members of G map onto Tn members, and In members map onto In members}. 

 
Thus, |MAP| ≤ |HYP|. 
 
[6.6] On account of our pursuit of only recursive structures, we will henceforth limit ourselves to 
group automorphisms via �Tj� and �Ij�. Therefore, we give a subset of HYP, TIHYP, whose 
members are only in the forms �Tj� and �Ij�. 
 

DEFINITION 6.6.1 TIHYP = {�h� | h is a member of TTO24, and �h�G = G}. 
 
As in HYP, certain members of TIHYP represent the same mapping. Therefore, we define one 
further set, TIMAP, which consists of the distinct mappings of a particular G onto G in TIHYP. 
 

DEFINITION 6.6.2 TIMAP = {F | the distinct automorphic mappings of a 
particular G onto G in TIHYP}. 

 
Accordingly, |TIMAP| ≤ |TIHYP|. 
 
[6.7] Now, each network which expresses the same G may serve as a node in a supernetwork 
whose edges represent �Tj� or �Ij� intervals. Furthermore, the groups of these supernetworks are 
isomorphic to G itself. For instance, consider the eight networks that express G = {T0,T3,T6,T9,I1, 
I4,I7,I10}. Table 6.7.1 lists these eight networks by (w,x) pair, and assigns them a label g1 through g8. 
 
TABLE 6.7.1 The eight networks that express G = {T0,T3,T6,T9,I1,I4,I7,I10} 
 
    Label  (w,x) pair 
    ----------------- 
    g1     (I_1_,T_9_) 
    g2     (I_4_,T_3_) 
    g3     (I_1_,T_3_) 
    g4     (I_10_,T_9_) 
    g5     (I_4_,T_9_) 
    g6     (I_7_,T_9_) 
    g7     (I_7_,T_3_) 
    g8     (I_10_,T_3_) 
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[6.8] Figure 31a replicates one of these networks, g8; 31b details its fundamental region. 
 
Figure 31. The network of w = I10, x = T3, using p = 0, with fundamental region 
 
a)                                b) 
                                        T_3_ 
   (0-----3-----6-----9----(0))    10---->-----1 
   / \   / \   / \   / \   /        \         / \ 
  /   \ /   \ /   \ /   \ /          \       /   \ 
 10----1-----4-----7----(10)        I_10_  I_1_  I_4_ 
  \   / \   / \   / \   / \            \   /       \ 
   \ /   \ /   \ /   \ /   \            \ /         \ 
    0-----3-----6-----9----(0)           0-----<-----3 
                                              T_9_ 

 
 
This G maps automorphically onto itself under eight �Tj� and �Ij� hyper-operators. Using the group 
TIHYP = {�T0�,�T3�,�T6�,�T9�,�I2�,�I5�,�I8�,�I11�}, Figure 32a places g8 into a supernetwork; Figure 
32b, again, shows its fundamental region. 
 
Figure 32. The supernetwork of w = �I11�, x = �T3�, and p = g8, with its fundamental region 
 
a)                                b) 
                                       <T_3_> 
   (g8----g3----g2----g6---(g8))   g1---->-----g5 
   / \   / \   / \   / \   /        \         / \ 
  /   \ /   \ /   \ /   \ /          \       /   \ 
 g1----g5----g7----g4---(g1)      <I_11_> <I_2_> <I_5_> 
  \   / \   / \   / \   / \            \   /       \ 
   \ /   \ /   \ /   \ /   \            \ /         \ 
    g8----g3----g2----g6---(g8)          g8----<-----g3 
                                             <T_9_> 
 
 
This group of hyper-operators is isomorphic to Figure 31’s group of operators. Table 6.8.1 gives 
the mapping F of the isography between Figures 31 and 32. 
 
TABLE 6.8.1 Mapping of F(G) onto TIHYP 
 
     Member          Member 
     of G     F      of TIHYP 
     ------------------------ 
     T_0_   <--->    <T_0_> 
     T_3_   <--->    <T_3_> 
     T_6_   <--->    <T_6_> 
     T_9_   <--->    <T_9_> 
     I_1_   <--->    <I_2_> 
     I_4_   <--->    <I_5_> 
     I_7_   <--->    <I_8_> 
     I_10_  <--->    <I_11_> 
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[6.9] The networks of order 12 and order 6 T/I G’s fit similarly into isographic supernetworks. 
However, the order 24 and order 4 G’s are somewhat exceptional. The sole order 24 G, TTO24, 
may be expressed by forty-eight distinct networks. Any one of these networks maps onto each of 
the forty-eight, using a different hyper-operator for each one. Accordingly, these mappings exhaust 
all forty-eight �Tj�, �Mj�, �MIj�, and �Ij� hyper-operators. However, since we choose not to consider 
�Mj� and �MIj� here, we are left with two supernetworks of order 24 whose groups of hyper-
operators map onto themselves via any �Tj� or �Ij�. In the constituent G’s of one of these sets of 
networks, x is always either T1 or T11, and in the other set of networks, it is T5 or T7. The group of 
hyper-operators for either supernetwork is isomorphic to G = TTO24. 
 
[6.10] The networks of order 4 are also exceptional. In Category 1,51 we find only two networks 
for each G. This situation exists simply because, in all cases, x = T6, and is accordingly its own 
inverse. Hence, any mapping under �Ij� is structurally identical to some mapping under �Tj�. Thus, 
2|TIMAP| = |TIHYP|. We may still fashion an order 4 supernetwork, but it will possess two 
degenerate networks-as-nodes. (See Table 6.10.1 and Figure 33 for one such example.) 
 
TABLE 6.10.1 The two networks which express G = {T0,T6,I2,I8} 
 
     Label  (w,x) pair 
     ----------------- 
     g1     (I_2_,T_6_) 
     g2     (I_8_,T_6_) 
 
 
Figure 33. Supernetwork of G = {T0,T6,I2,I8} networks 
 
       <T_6_> 
   g2----------g1 
    \         / \ 
     \       /   \ 
 <I_10_> <I_4_> <I_10_> 
       \   /       \ 
        \ /         \ 
         g1----------g2 
             <T_6_> 
 
 
Table 6.10.2 shows an isomorphic mapping G of G onto TIHYP. 
 
 

                                                           
51 The Category 2 G’s present another situation altogether. Here, we also find automorphic mappings among 
networks which express the same G, but these do not correspond directly to any of the forty-eight hyper-operators. 
Sometimes Tn operators map onto Tn’s, and In’s onto In’s; and at other times, Tn’s map onto In’s, and vice versa. 
However, the automorphic mappings of G onto itself do form a group, a permutation group on G’s members. As T0, 
the identity element, must always map onto itself, these permutations act on the other three members of G. In other 
words, this permutation group is isomorphic to S3. Interestingly, like the groups of �Tj� and �Ij� hyper-operators we 
have already discussed, S3 is also dihedral; it is isomorphic to D6. Therefore, this permutation group’s 
transformations are analogous to, but certainly not the same as, the set of {�T0�, �T4�, �T8�, �Ij�, �Ij+4�, �Ij+8�} hyper-
operators. 
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TABLE 6.10.2 Mapping of F(G) onto TIHYP 
 
     Member          Member 
     of G     F      of TIHYP 
     ------------------------ 
     T_0_   <--->    <T_0_> 
     T_6_   <--->    <T_6_> 
     I_2_   <--->    <I_10_> 
     I_8_   <--->    <I_4_> 
 
 
[6.11] Now we address the relationships among isomorphic G’s. As each T/I G is isomorphic to 
some dihedral group, Dn, the G’s which are isomorphic to the same Dn are also isomorphic to each 
other. By extension, all the various networks which express these isomorphic G’s are isographic. 
We demonstrate that the set TIISO of �Tj� and �Ij� hyper-operators that map G onto any one of 
these isomorphic G’s is related to TIHYP. 
 

DEFINITION 6.11.1 TIISO = {�c� | �c� = �Tj�, or �c� = �Ij�; and �c�G = G′}. 
 
If �c�G = G′, where �c� is a member of TIISO, then �c′�G = G′ for any �c′� in TIISO. Of course, G 
may or may not equal G′, and TIHYP may or may not equal TIISO. 
 
[6.12] To discover the relationship between TIHYP and any TIISO, we must first give TTOHYP 
and TTOISO as the sets of TTO determinants for TIHYP and TIISO, respectively. 
 

DEFINITION 6.12.1 TTOHYP = {h | �h� is a member of TIHYP}. 
 
DEFINITION 6.12.2 TTOISO = {c | �c� is a member of TIISO}. 

 
Then, TTOISO = c(TTOHYP) is a left coset of TTOHYP in TTO24, for any c in TTOISO. 
 

THEOREM 6.12.3 TTOISO is a left coset c(TTOHYP) of TTOHYP using any c in 
TTOISO. 

 
Clearly, if TTOISO = TTOHYP, then c(TTOHYP) = TTOHYP. 
 
[6.13] Therefore, we may give the set TTOLC of all left cosets of TOHYP. 
 

DEFINITION 6.13.1 TTOLC = {c(TTOHYP) | c is a member of TTO24). 
 
DEFINITION 6.13.2 |TTOLC| = 24 / |TTOHYP|. 

 
The hyper-operators determined by each member of this set map G onto one of its |TTOLC| 
isomorphic counterparts (in the sense of 6.11.1). Moreover, for each member of TTOLC, the 
hyper-operators it determines map a network that expresses G onto any of the |HYP| networks 
(6.5.1) to which it is isographic. 
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[6.14] Finally, we consider a higher level of structure relating Klein-bottle Tonnetze: the hyper-
hyper-operators which relate isomorphic sets of hyper-operators. 
 

DEFINITION 6.14.1 ��Tx���Tj� = �Tj�; ��Tx���Ij� = �Ij+x�. 
 
DEFINITION 6.14.2 ��Mx���Tj� = �T5j�; ��Tx���Ij� = �I5j+x�. 
 
DEFINITION 6.14.3 ��MIx���Tj� = �T7j�; ��Tx���Ij� = �I7j+x�. 
 
DEFINITION 6.14.4 ��Ix���Tj� = �T11j�; ��Tx���Ij� = �I11j+x�. 

 
These hyper-hyper-operators may be subjected to an examination similar to the above, and so forth. 

 
  

[7] CONCLUSIONS 
 
[7.1] So far, we have resisted the impulse to make any significant comparisons between our Klein-
bottle Tonnetze and the toroidal Tonnetze of Cohn et al. Of course, many parallels exist. For example, 
we might define a group of congruence motions acting on the tessellation of triangles within one of 
our networks, and this group would share many attributes with that of the LPR-group on the 
Oettingen/Riemann Tonnetz. We also find significant differences. First, a Klein bottle is a one-sided 
manifold, whereas a torus is two-sided. Therefore, certain cycles on the former visit the same triangle 
twice: once on the “front” and once on the “back.” Second, as we already observed in Note 32, these 
triangles are not necessarily Cohn functions; they are so only when G is commutative. Moreover, the 
voice-leading of their corresponding L-, P-, and R-like transformations is not necessarily parsimonious. 
However, the corresponding transformations are contextual inversions, and, like L, P, and R, they 
preserve two common tones. 
 
[7.2] In addition to triangular tilings, we might also study the tilings of other shapes on our Tonnetze. 
Of particular salience is the rhombus, which serves as the fundamental region of our G’s. The tessellation 
of rhombi on the Klein bottle’s surface is acted on by a group of congruence motions which was a 
favorite of graphic artist M.C. Escher.52 Several of his well known works, including “Horseman” (1946), 
incorporate this group.53 For our purposes, the four vertices of a rhombus might represent pitch-classes, 
allowing us to model relationships among tetrachords, using four-node Klumpenhouwer networks. 
 
[7.3] In certain graphic works, Escher metamorphosed one shape into another through a process of 
gradual distortion. Using the same group as “Horseman,” “Sky and Water II” (1938) demonstrates 
such a process, in which fish gradually become air, and birds become water. Similarly, we may 
distort pitch-class collections in our Tonnetze by incorporating various processes. One example 
uses an anti-isomorphic permutation of Category 1 Tonnetze, and rotates each subsequently higher 
row in the direction of its Tn arrows. The result is a cycle of weak isographies between shapes in 
one row and those in the consecutively higher rows.54 

                                                           
52 Coxeter and Moser (1965, 43) give this group as “p g” (see Note 23). Pólya (1924, 280–81), whose work Escher 
knew, gives it as “C2.” 
53 See Schattschneider (1990) for an account of the plane symmetry groups used in Escher’s periodic drawings. 
54 This rotational scheme is similar to the X transformation of Morris (1998, 188–93), as applied to Perle Spaces. 
However, Perle Spaces are not conceived of as using glide reflections. 
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[7.4] Finally, and perhaps most significantly, we address the applicability of this theory to music 
analysis. We have considered three examples in this study: Schoenberg’s “Nacht,” Lutosławski’s 
Funeral Music, and Crumb’s “Gargoyles.” Particularly apt are examples that lend themselves well 
to analysis using Klumpenhouwer networks, which also possess a high degree of common-tone 
retention among collections, and which use limited set-class material. Such examples are abundant 
in the body of atonal music, and will suggest further extensions and refinements to the theory of 
Klein-bottle Tonnetze. 
 
 
 
Return to beginning of article 
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[9] APPENDIX 
 
[9.1] This section contains the proofs of the theorems in the text. 
 
THEOREM 2.6.3 w = zx. 
     Proof. w = zx 
              = z(z-1w)  by 2.6.1 
              = (zz-1)w      by the associative property 
              = w              Q.E.D. 
 
THEOREM 2.6.4 z = wx-1. 
     Proof. z = wx-1 
              = w(z-1w) -1  by 2.6.1 
              = w(w-1z)   by the calculation of inverses 
              = (ww-1)z  by the associative property 
              = z   Q.E.D. 
 
COROLLARY 2.6.5 z = xw. 
     Proof. z = xw 
              = (z-1w)w  by 2.6.1 
              = z-1 (ww)  by the associative property 
              = z-1y  by 2.6.2 
              = z-1 (zz)  by 2.6.2 
              = (z-1z)z  by the associative property 
              = z  Q.E.D. 
 
THEOREM 2.9.1 yna = ayn, for any a in G, and power of y. 
     Proof. (A) We begin by showing that y commutes with w.  
Specifically, as y = w2 (by 2.6.2), then y is a member of W. Since W is cyclic, it is commutative; 
hence, y commutes with w. The same argument holds for y and z.  
(B) Next, we show that y commutes with x. 
     xy = yx 
          = (zz)x by 2.6.2 
          = z(zx) by the associative property 
          = zw by 2.6.3 
          = (xw)w by 2.6.5 
          = x(ww) by the associative property 
          = xy by 2.6.2 
(C) Therefore, we conclude that y commutes with all elements of G, as any member of G may be 
expressed as a product of powers of w and x. By the same argument, all powers of y commute 
with every member of G. Q.E.D. 
 
THEOREM 2.9.2 X is normal in G. 
     Proof. It suffices to show that the conjugate of x by the general element xawb of G is a 
generator of X; specifically, it is either x or x-1. We find two cases: (1) when b is odd, in which 
event the conjugate is x-1; and (2) when b is even, wherein it is x. 
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     Case 1: b = 1, so b is odd. 
     (xaw)-1(x)xaw = x-1 
                            = (z-1w)-1  by 2.6.1 
                            = w-1z  by inversion 
                            = w-1(xw)  by 2.6.5 
                            = w-1(x)w  by association 
                            = w-1(x-axxa)w by def. of cyclic group 
                            = (w-1x-a)x(xaw) by association 
                            = (xaw)-1x(xaw) by inversion 
                            = (xaw)-1(x)xaw as conjectured 
     Case 2: b = 2, so b is even. 
     (xaw2)-1(x)xaw2 = x 
                               = z-1w  by 2.6.1 
                               = (xw)-1w  by 2.6.5 
                               = w-1x-1w  by inversion 
                               = w-1(z-1w)-1w by 2.6.1 
                               = w-1(w-1z)w            by inversion 
                               = (w-1w-1)zw by association 
                               = w-2zw  by composition 
                               = w-2(xw)w by 2.6.5 
                               = w-2x(ww) by association 
                               = w-2(x)w2 by composition 
                               = w-2(x-axxa)w2 by def. of cyclic group 
                               = (w-2x-a)x(xaw2) by association 
                               = (xaw2) -1x(xaw2) by inversion 
                               = (xaw2)-1(x)xaw2 as conjectured 
Then, as b is always the sum of some combination of 1’s and 2’s, the conjugate of x is either x or 
x-1, both of which are generators of X. Q.E.D. 
 
THEOREM 2.9.3 If 2 | |X|, then xk, where k = |X| / 2, is a member of the center of G. 
     Proof. First, xk commutes with x, as they are members of the same cyclic group. Then, we 
show 
     wxk = xkw 
             = x-kw  by definition of involution 
             = z(xk)z-1w  by 2.9.2 (applied to z) 
             = zxkx  by 2.6.1 
             = zx(xk)  by def. of cyclic group 
             = wxk  by 2.6.3. 
Thus, as xk commutes with the generators x and w of G, it commutes fully with G. Q.E.D. 
 
THEOREM 2.10.3 2 | |G|. 
     Proof. |XY| = |G| / 2 by 2.6.2 
            XY is normal in G by 2.9.1-2 
            |G / XY| = 2  by definition of quotient groups 
            Therefore, 2 | |G|. Q.E.D. 
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THEOREM 2.11.1 If ab = ba for any a,b in G, then |X| = 2. 
     Proof. x = x-1 
                   = (z-1w) -1 by 2.6.1 
                   = w-1z  by inversion 
                   = zw-1  by the commutative property 
                   = (xw)w-1 by 2.6.5 
                   = x(ww-1) by the associative property 
                   = x  Q.E.D. 
 
THEOREM 3.1.2 |P| = |W(p)||X(p)| / |W(p) ∩ X(p)|. 
     Proof. The proof is left for the reader. 
 
THEOREM 3.5.6 For any Einheit h, t+(h) and t-(h) have the same GIS-interval content. 
     Proof. Let (a,b,c) be the interval series of t+(h), regardless of h’s parity. Then,  
      xnw-1 = w-1x-n by extension of 2.6.4-5  
                          = (xnw) -1 by inversion 
applied to 3.5.3-4 gives the interval series of the corresponding t-(h) as (a,b-1,c-1). Thus, by 3.5.5, 
both triangles have the same GIS-interval content: {e,a,a-1,b,b-1,c,c-1}. Q.E.D. 
 
THEOREM 3.6.1 Triangles of the same TRI-class whose nodes are (left) transforms of each 
other by operations in CG (2.9.3) have the same interval series. 
     Proof. Using the variable j from 3.5.1-4,  
 (1) for any Einheit h, h and h′ = y(h) are determined by the same power of x; therefore, 
we find no variation in the j’s of their respective interval-series functions.  
 (2) If 2 | |X|, then triangles of the same TRI-class related by xk, where k = |X| / 2, have 
the same interval series. This situation arises because, for any j, 2j = 2(j+k) mod |X|.  
 (3) We may extend the above conditions to any power of y, and to products of powers 
of y and xk. Q.E.D. 
 
THEOREM 4.4.1 Given w = Tm and x = T6 (by 2.11.1). X ⊆ W if there exists some integer i, 
such that mi = 6. 
     Proof. W = {Tmi | i is an integer mod 12/m}. X = {T0,T6} (by 2.11.1). Therefore, T0 is a 
member of both W and X, and their intersection contains at least one element. Furthermore, if 
there exists an integer i, such that mi = 6, then T6 is a member of W. Hence, in this case, X of 
order 2 (by 2.11.1) is a subset of (or equal to) W, and |W| ≥ 2. Q.E.D. 
 
THEOREM 5.3.3 In any Klein-bottle Tonnetz which incorporates Tn and In operators, |W| = |Z| = 2. 
     Proof. (A) If w and z are both In operators (Category 1), they both generate involutions (by 
definition of the T/I group’s isomorphism with the dihedral group of order 24, D24. (B) If w and 
x are both In operators (Category 2), then w2 = e (as above). Now, z2 must also equal e (by 2.5.1). 
Therefore, as w = Im, x = In, and z = xw (by 2.6.4), then z = InIm = Tn-m. Thus, for this z2 to equal 
e, z must be either T0 or T6. However, if z = T0, then by 2.6.3, w = zx = (T0)x = x, which we 
eliminate as w and z are distinct glide reflections. Thus, z must be T6, of order 2. The same 
argument holds for x and z as In operators; in this case, w = T6. Q.E.D. 
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THEOREM 5.6.1 Given w = Im, and x = Tn (Category 1), W(p) ⊆ X(p) if there exists some 
integer i, such that ni+p = m-p. 
     Proof. First, W(p) = �Im� (p) = {p,m-p}, and X(p) = �Tn� (p) = {ni+p | i is an integer mod 
12/n}. Therefore, p is a member of both W(p) and X(p), and their intersection contains at least 
one element. Next, if there exists an integer i, such that ni+p = m-p, then m-p is also a member of 
X(p). Hence, in this case, W(p) ⊆ X(p). Q.E.D. 
 
THEOREM 5.7.1 If z = T6 (Category 2), then |W(p) ∩ X(p)| = 1. 
     Proof. If z = T6, then w is of the form Im. This w is always distinct from x = z-1w (by 2.6.1) = 
T6Im = Im+6, as no m satisfies m = m+6. Then, as �Im� (p) = {p,m-p} is not equal to �Im+6� (p) = 
{p,(m+6)-p}, we observe their trivial intersection, {p}. Q.E.D. 
 
THEOREM 6.12.3 TTOISO is a left coset c(TTOHYP) of TTOHYP using any c in TTOISO. 
     Proof. We give G = {Tni,Ini+m | i is a member of Z12/n}, and G′ = {Tnj,Inj+m+x | j is a member of 
Z12/n}.   
Then, TTOISO = {Tni′+x,I2m+n(i′+j′)+x | i′ and j′ are members of Z12/n}. Furthermore, TTOHYP = 
{Tni,I2m+n(i+j) | i,j are members of Z12/n} is the TTOISO which carries G onto G. We verify that 
c(TTOHYP) = TTOISO for any c is a member of TTOISO. 
     (1) Tni′+xTni = T(ni′+x)+(ni) = Tn(i′+i)+x is a member of TTOISO, for some (i′+i) mod 12/n. 
     (2) I2m+n(i′+j′)+xTni = I(2m+n(i′+j′)+x)-(ni) = I2m+n(i′+j′-i)+x is a member of TTOISO, for some (i′+j′-i) 
mod 12/n. 
     (3) Tni′+xI2m+n(i+j) = I(ni′+x)+(2m+n(i+j)) = I2m+n(i′+i+j)+x is a member of TTOISO, for some (i′+i+j) 
mod 12/n. 
    (4) I2m+n(i′+j′)+xI2m+n(i+j) = T(2m+n(i′+j′)+x)-(2m+n(i+j)) = Tn(i′+j′-i-j)+x is a member of TTOISO for some 
(i′+j′-i-j) mod 12/n. 
     Thus, TTOISO is a left coset of TTOHYP for any of its members. Q.E.D. 
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