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show that it is always possible to find a minimal voice leading that has no voice 
crossings; however, it is not always possible to avoid voice crossings while maximizing 
common-tone retention.  I describe a general method for identifying a minimal voice 
leading between arbitrary chords, and show that our familiar system of diatonic key 
signatures implements this method.  I conclude by deriving a set of key signatures for the 
acoustic scale.  These key signatures represent minimal voice leadings from the diatonic 
to the acoustic collection, and are interestingly related to the familiar diatonic key 
signatures. 
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VOICE LEADINGS AS GENERALIZED KEY SIGNATURES 
A rational reconstruction of Western musical notation 

DMITRI TYMOCZKO 
 

0.1 This paper argues that key signatures provide a powerful tool 
for understanding voice leading. It has five sections. The first 
generalizes the system of Western musical notation, defining the 
notion of a basic scale—a collection of pitch classes provided with 
letter names. The second section shows that any key signature 
determines a voice leading from the basic scale to a target scale, 
and, conversely, that any voice leading can be expressed as a key 
signature. The third section describes three virtues that a voice 
leading or key signature may have: avoiding voice crossings, 
maximizing common tones, and minimizing the overall “size” of the 
voice leading. I show that two of these virtues are always compatible, 
but that all three cannot always be exemplified simultaneously. The 
fourth section asks how to find a minimal voice leading between 
arbitrary chords. I provide a general solution to this problem, and 
show that this solution is implemented by the familiar system of 
diatonic key signatures. The final section uses the same technique 
to develop a system of key signatures for the acoustic scale.  

0.2 This investigation will require that we think rigorously about 
the foundations of Western musical notation. This is inherently a 
pedantic and somewhat painful enterprise. Readers may initially 
resent the author, and may wonder if he is motivated by a fetish for 
obscurantism or an unhealthy love of formalism for its own sake. I am 
not. Instead, I hope to demonstrate that some elementary features of 
our system of musical notation are as yet imperfectly understood. 
Furthermore, these features are directly related to a subject of intense 
current theoretical concern: the theory of voice leading. Understanding 
our familiar notational system, I will show, leads to new insights 
about the nature of pitch classes, pitch-class intervals, and voice leading.  

0.3 This is chiefly because key signatures turn out to be entities of 
considerable intrinsic interest: collections of paths in pitch-class 
space. A path in pitch-class space resembles, but is not reducible 
to, a pitch-class interval. Paths are more fine-grained than intervals, 
allowing us to distinguish the one-semitone descending route 
between C and B from the eleven-semitone ascending route 
between them. This flexibility is quite useful when we are thinking 
about voice leading between pitch-class sets. Thus the humble key 
signature, seemingly unworthy of theoretical investigation, provides 
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an extremely powerful instrument for investigating voice leading.  
0.4 Before proceeding, I would like to acknowledge my indebtedness 

to the important work of Julian (Jay) Hook. Jay’s 2003 paper on 
“[key] signature transformations” prompted my own investigation 
into the broader subject of voice leading. Furthermore, Jay was the 
first to realize that the rows of my “interscalar path matrices” can 
be interpreted as key signatures (Section IV).1 The current paper 
brings Hook’s approach together with my own, demonstrating that 
the theory of voice leading and the theory of key signatures are 
inextricably intertwined.2 

 
I. Numbers, letters, clefs, and accidentals 

 
1.1 In this section, I generalize the traditional Western system of 

musical notation. This process will lead me to draw distinctions 
that are not ordinarily drawn, largely because we take for granted 
special features of our familiar notational system. For example, I 
will distinguish scale-dependent and scale-independent measures 
of distance in pitch-class space, and paths in pitch-class space from 
pitch-class intervals. The result will be greater clarity about 
conventional musical notation.  

1.2 I begin by providing numerical names for pitches and pitch 
classes. Somewhat unusually, I do so without presupposing a 
chromatic scale that divides pitch- and pitch-class space into discrete 
“steps.” Instead, I develop a single, consistent set of numerical 
labels that can be applied to any tuning system and any chromatic 
universe. This system allows us to identify the diatonic scale (or 
more generally, a “basic scale” as defined below) prior to specifying 
how it is to be embedded in a larger, “chromatic” collection.3 This 

                                                 
1 Hook 2004. 
2 Hook also read and commented on drafts of this paper. I would also like 
to thank Noam Elkies, who read a draft of this paper, and who has been 
extremely generous in teaching me mathematics over the past year. 
Similarly, conversations with Cliff Callender and Ian Quinn on a variety 
of topics have been quite stimulating. Two of Callender’s papers (2004, 
2005) also sparked ideas in the present paper. Finally, my wife Elisabeth 
Camp provided moral support and inspiration—not to mention a very 
incisive set of comments on this paper. 
3 The chromatic scale becomes relevant only when defining the symbols 
“s” and “f”; see §1.14. 
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nicely reflects the fact that the diatonic scale was used long before 
it came to be interpreted as a subset of the chromatic scale. 

1.3 The fundamental frequency f of a pitch can be associated with 
a real number p according to the equation: 

 
 p = 69 + 12log2 (f/440) (1) 
 

This extends the standard system of MIDI note numbers to the 
microtones, associating any conceivable pitch with a unique real 
number and any real number with a unique pitch.4 In this continuous, 
linear pitch space, middle C corresponds to the number 60; the 
semitone is equal to a distance of one unit; the octave has size 12; 
and ascending motion in pitch corresponds to ascending motion 
along the real line R.5

1.4 We form pitch-class space by identifying, or “gluing together,” 
all points p and p + 12 in pitch space. The result is the circular 
quotient space that mathematicians call R/12Z. We can visualize 
this space as shown in Figure 1.6 Note that Figure 1 is continuous: 
although I have labeled only the familiar pitch classes of twelve-
tone equal temperament, every point on the figure represents a 
distinct pitch class.  

 
 

 
4 Curiously, music theory has standard numerical names for pitch classes 
but not pitches: theorists typically use spelling-specific designations like 
“C4” and “Cs6” to refer to pitches. I use MIDI note numbers here 
because they are reasonably well-known, and because they are consistent 
with the standard numerical labels for pitch classes. 
5 According to the standard way of measuring distance in pitch space, the 
distance between two pitches p and q is equal to the absolute value of 
their difference, |p – q|. This is the familiar undirected interval between 
the pitches. 
6 The description of pitch-class space as a circle is not simply a metaphor 
and does not depend on any specific visual representation of pitch-class 
space. Pitch-class space is topologically equivalent to a circle, and thus 
shares with it a well-defined mathematical structure. Consequently, we 
can translate many true statements about pitch-class space into true 
statements about circles, and vice versa. For example, any method of 
measuring distances on any circle (that is, any mathematical metric for 
the circle) defines a metric for pitch classes.  
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Figure 1. Circular pitch-class space 
 

 
 

1.5 We can label pitch classes using real numbers in the range 0 ≤ 
x < 12. These can be interpreted as clockwise arc lengths from the 
pitch class labeled 0.7 Ascending motion in pitch-class space 
corresponds to clockwise motion on the circle; descending motion 
corresponds to counterclockwise motion.8 This system generalizes 
the familiar integer-based system for notating pitch classes in 12-
tone equal temperament, in which C = 0, Cs = 1, and so on. In 
continuous pitch-class space these familiar pitch classes retain their 
familiar names; however, they are joined by microtones such as “C 
quarter tone sharp,” which is assigned the number 0.5, and “the 

                                                 
7 Real numbers in the range 0 ≤ x < 12 form a group under addition 
modulo 12Z. This is the quotient group R/12Z. Two real numbers x and 
y are congruent modulo 12Z if there exists some integer i such that x = y 
+ 12i. The quantity “x + y modulo 12Z” is the number z, congruent to (x 
+ y) modulo 12Z, and lying in the range 0 ≤ z < 12. Addition modulo 
12Z resembles integer addition modulo 12, except that non-integral 
values are permitted. For example, 10 + 2.5 ≡ .5 modulo 12Z.  
8 It is purely a matter of convention that we associate ascending motion 
in pitch-class space with clockwise motion on a circle. We could just as 
well associate ascending motion in pitch-class space with counter-
clockwise motion on an (appropriately labeled) circle. However, the 
distinction between ascending and descending motion in pitch-class 
space is not itself conventional; see note 23. 
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pitch class 17 cents above D,” which is assigned the number 2.17.9 
1.6 NB. The system of pitch-class labels described here has been 

defined to be consistent with the system of labeling pitch classes 
using scale degrees of the familiar 12-tone equal-tempered “chromatic 
scale.” However, these labels do not depend on the existence of 
this scale, and have been defined without reference to it. The 
consistency of the two systems is purely a matter of notational 
convenience. Convenience, however, is purchased at the potential 
cost of confusion, and it is important to distinguish the two 
systems. I will use the term semitone to refer to a unit of length in 
pitch-class space that is defined without reference to any chromatic 
scale. A semitone is 1/12 of an octave, regardless of the chromatic 
scale. A “chromatic scale step” (or “chromatic step”) refers to a 
length defined in terms of some chromatic scale (not necessarily 
the familiar one). Only in twelve-tone equal temperament does one 
chromatic scale step always equal one semitone. 

1.7 We can now provide pitch classes with letter names. We choose 
some multiset10 of pitch classes to serve as the basic scale. We 
order this scale by choosing some element as the first scale degree 
and arranging the remaining elements in “scalar order”—that is, so 
that the absolute sum of the intervals between successive pitch 
classes totals 12 or less.11 Finally, we label the successive scale 
degrees of the basic scale with the letter names A, B, C, D, … 

1.8 I will typically list basic scales in letter-name order. For 
example, I will notate the familiar white note scale as (9, 11, 0, 2, 

 
9 The distance between any two pitch classes a and b is usually taken to 
be the smallest distance between two pitches belonging to those pitch 
classes. This is the quotient metric, corresponding to the interval class 
(or undirected pitch-class interval) between two notes. This metric 
allows us to use pitch-class distances to make general statements about 
pitch distances. For example, “pitch class E is four semitones away from 
pitch class C” implies “for every pitch belonging to pitch class C there is 
a pitch belonging to pitch class E four semitones away from it.” 
10 A multiset is a collection that may contain multiple instances of a 
single object. Footnote 35 motivates the use of multisets. 
11 Here we consider the intervals as real numbers in the range 0 ≤ x < 12, 
and we add them in the normal way, rather than modulo 12Z. Given the 
circular model shown in Figure 1, we require that it be possible to traverse 
the ordering by starting at the first element, moving exclusively clockwise 
on the circle, and traveling no more than one circumference in the process. 
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4, 5, 7).12 This indicates that letter name “A” corresponds to pitch 
class 9, “B” corresponds to pitch class 11, “C” corresponds to pitch 
class 0, and so on. If the basic scale is the pitch-class series (0, 4, 7, 
0), corresponding to the C major triad with doubled root, then the 
letter name “A” corresponds to pitch class 0, “B” corresponds to 
pitch class 4, “C” corresponds to pitch class 7, and “D” corresponds 
to pitch class 0. Here, the letter names “A” and “D” refer to the 
same pitch class. Finally, if the basic scale is the equal-tempered 
pentatonic scale (1, 3.4, 5.8, 8.2, 10.6) then “A” corresponds to 
pitch class 1, “B” corresponds to pitch class 3.4, and so on. Note 
that the procedure described in the preceding paragraph ensures that 
it is always possible to rotate the basic scale so that it is in ascending 
numerical order. Thus (0, 0, 4, 7), (0, 4, 7, 0), (4, 7, 0, 0), and (7, 0, 
0, 4) are acceptable basic scales, while (0, 4, 0, 7) is not. 

1.9 We can provide pitches with letter names by appending an 
octave number to the letter name of the pitch class containing that 
pitch.13 Thus letter name C4 corresponds to pitch number 60 
(“middle C”), while letter name B3 corresponds to pitch number 
59, a semitone below it. 

1.10 Pitch classes in the basic scale can be identified using the 
familiar staff-and-clef system. A clef indicates that a certain staff 
line (or staff space) corresponds to a letter name; the next space (or 
line) above this corresponds to the next letter name, and so on.14 
Thus, without knowing anything about the basic scale, we can say 
that the pitch classes in Figure 2 are called “C,” “B,” “C,” and “A.” 
However, in order to translate these letter names into numerical 
names we must know what the basic scale is: in the conventional 
system, the letter names indicate pitch classes (0, 11, 0, 9). When the 
basic scale is (0, 4, 7, 0), then the letter names indicate the pitch 
classes (7, 4, 7, 0). When the basic scale is (1, 3.4, 5.8, 8.2, 10.6), 
then the letter names indicate the pitch classes (5.8, 3.4, 5.8, 1). 

                                                 
12 In this paper, regular parentheses denote ordered lists, and curly braces 
denote unordered collections. Thus (a, b, c) is ordered, whereas {a, b, c} 
is not. 
13 Let a be a numerical label for a pitch as defined in §1.3. The octave 
number of a is ⎣a/12⎦ – 1, the greatest integer less than or equal to (a/12) 
– 1. Thus “middle C” has octave number 4, as do all pitches between 
middle C and the next-highest C.  
14 Note that letter names “wrap around” from the end of the ordering to 
the beginning. 

 
 



 
 
 

Music Theory Online 11.4 – 8 
 

Figure 2. The letter-name series (C, B, C, A) 

 
 

1.11 Clefs indicate that a staff line or staff space corresponds to a 
specific letter name. But they also pick out a specific pitch 
possessing this letter name. For instance, in the conventional 
system, the C clef indicates the staff line corresponding to “middle 
C,” or pitch 60. The space above this line refers to the D 
immediately above that C, or pitch 62, and so on. We have not yet 
shown how to generalize the use of clefs to indicate pitches, 
however. Suppose, for example, our basic scale is (11, 2, 5, 8). We 
can use a C clef to show that some staff line corresponds to pitch 
class 5, the third element in the basic scale. But it is not 
immediately obvious whether this C clef identifies pitch 41, 53, 65, 
77, or some other pitch. Once this decision has been made, though, 
mapping the remaining staff positions to pitches is a straight-
forward matter: we simply require that what is notated as an 
ascending step (the interval between one staff position and the 
next-highest staff position) correspond to an ascending interval 
between pitches with the appropriate letter names, spanning less 
than an octave. 

1.12 We can rectify this problem by exploiting the system described 
in §1.3, writing a real number under each clef that identifies the 
pitch labeled it. Figure 3 demonstrates. (Alternatively, we can imagine 
this identification to be accomplished by unwritten convention, as 
in the familiar system.)15 We will then have a fully generalized 
staff-and-clef system, suitable for any basic scale with three or 
more elements.16 

 
Figure 3. Using a numbe  to identify a clef’s pitch r 

 
 

                                                 
15 Here and elsewhere I use the term “familiar system” to refer to the 
familiar (white-note) basic scale as embedded within the familiar equal-
tempered chromatic collection. 
16 For basic scales with one or two elements we would need to develop 
an “A clef,” since these systems have no letter name “C.” 
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1.13 This generalized system ensures that there is an analogical 
relation between the visual appearance of the notation and the 
audible features of the music. In moving up by one staff position 
we move up by one step of the basic scale; this corresponds to a 
nondescending motion in pitch space.17 If the basic scale contains 
no pitch-class duplications then the analogy between the visual and 
the aural is even tighter: moving up by one staff position corresponds 
to ascending by step in pitch space. This isomorphism greatly 
increases the legibility of the notation. (It also permits certain kinds 
of cross-modal puns, as in Handel’s “O Thou That Tellest Good 
Tidings to Zion,” which is said to imitate the shape of mountains in 
its violin lines.) The analogical relation between visual and aural 
will play an important role in later sections of the paper. 

1.14 We can now extend the system of letter names by defining the 
symbols “s” and “f.” This is rather more complicated than one 
might expect. The standard interpretation of these symbols, which 
will be adopted here, requires us to reconceive the basic scale as 
being embedded in (or as being a submultiset18 of) another multiset 
called the chromatic scale.19 The chromatic scale can be identical 
to the basic scale, though it is usually larger than it. For example, 
the familiar seven-note basic scale (9, 11, 0, 2, 4, 5, 7) is typically 
embedded in the larger, equal-tempered, 12-note chromatic scale 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. 

1.15 We can order the chromatic scale as described in §1.7: 
choosing an arbitrary element as the first chromatic scale degree, 
arrange the remaining elements so that they form a nondescending 

                                                 
17 I use the term “nondescending” because I am permitting basic scales to be 
multisets; this means that adjacent staff positions may refer to the same pitch. 
18 The mathematical definition of a “submultiset” requires that no two 
elements of the basic scale correspond to the same element of the chromatic 
scale. Thus, if the basic scale has pitch class duplications, then the chromatic 
scale must also have duplications. 
19 It is worth repeating that the only function of the chromatic scale in 
our generalized notational system is to define the symbols “s” and “f.” 
Note that it is also possible to define the symbols “s” and “f” without 
regard to the chromatic scale, by stipulating that they raise or lower a 
pitch class by some fixed—or even contextually variable—fraction of an 
octave. (This may in fact be the best way to analyze the early historical 
meaning of these symbols, as well as their meaning to contemporary 
string players.) Nothing substantial rests on which definition is chosen. 
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series of pitch classes spanning an octave or less. Each element in 
the ordering is one chromatic scale step above the preceding 
element. We conceive of this ordering as circular, with the first 
element being one chromatic scale step above the last. 

1.16 The symbols “s” and “f” can be appended to the right of any pitch-
class letter name X, transforming it into a compound letter name 
that (typically) refers to a different pitch class.20 The compound symbol 
“Xs” means “the pitch class one chromatic scale step above X.”21 
The compound symbol “Xf” means “the pitch class one chromatic 
step below X.” The symbols can be applied recursively. Thus “(Xs)s,” 
or “Xss,” means “the pitch class two chromatic steps above X.” 

1.17 A compound letter name cannot use both the “s” and “f” 
symbols. Thus we rule out pitch-class letter names such as Cssf or 
Ffsfff. The symbol “M” is an abbreviation for “ss,” and therefore 
counts as two accidentals. For longer strings of accidentals, we will 
use exponential notation: Xs12 refers to the pitch class 12 chromatic 
steps above X. Non-integer exponents are also permitted. For 
example, the notation Xs1.5 refers to the pitch class 1.5 chromatic 
steps above X.22 This notation is useful if we want letter names for 
pitch classes lying outside of the chromatic scale, such as “C 
quarter-tone sharp” in the familiar system. 

 
20 “X” and “Xs” can refer to the same pitch class if the chromatic scale 
has duplicate pitch classes, or only one note. 
21 The symbol “C,” like the numeral “3,” can be analyzed as a simple 
name without any internal structure. By contrast, “Cs” is a complex term 
like “2 + 1,” whose meaning is determined by systematically combining 
the meanings of its component parts. The complex term “2 + 1” means 
“the result of adding 1 to 2,” just as “4 – 1” means “the result of 
subtracting 1 from 4.” The two complex terms refer to the same object, 
the number 3, but do so using different semantic values: the instruction 
“subtract 1 from 4” is different from the instruction “add 1 to 2,” even 
though the two have the same result. In much the same way, the complex 
term “Cs” means “the pitch class that is an ascending chromatic step above 
C.” This refers to the same object—pitch class 1—as does the complex 
term “Df.” However, the instruction “go up one chromatic step from C” 
is different from the instruction “go down one chromatic step from D.” 
22 Fractional accidentals are to be interpreted in the obvious way, as 
fractions of a chromatic scale step. In terms of Figure 1, the fraction 
refers to the fraction of the length of the (smallest) ascending arc between 
successive steps of the chromatic scale. 
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1.18 Every pitch class can now be given an infinite number of letter 
names. For instance, in the familiar system the letter names C, Bs, 
Dff, Asss, and so forth, all refer to the pitch class 0. This contrasts 
with the numerical system, in which there is only one name for 
every pitch class.  

1.19 We now come to a point that will be central to the rest of the paper. 
Every compound letter name can be associated with a unidirectional 
path in pitch-class space.23 The path begins with the pitch class 
possessing the letter name in question; its length and direction 
are determined by the accidentals applied to the name. Figure 4 
 

Figure 4. Every letter name determines a unique  
path in pitch-class space 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                                 

23 An ascending path in pitch-class space is the image of an ascending 
path in pitch space. That is, it is the path obtained by replacing every 
pitch in the ascending pitch-space path with the pitch class to which it 
belongs. The quotient metric described in footnote 9 has the highly 
desirable feature that every path in pitch space has the same length as its 
image in pitch-class space. To say that a path in pitch-class space is 
unidirectional is to say that it moves exclusively in the ascending or 
descending direction. In the intrinsic geometry of circular pitch-class 
space, a unidirectional path is a line segment. 
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demonstrates, identifying the paths corresponding to some letter 
names in the familiar system. Bs, for example, begins with pitch 
class 11 and ascends one chromatic scale step to pitch class 0, Dff 
begins at pitch class 2 and descends two chromatic steps to pitch 
class 0. Gsssss starts with pitch class 7 and ascends 5 chromatic 
scale steps to pitch class 0. Gfffffff starts at pitch class 7 and 
descends by 7 chromatic steps to pitch class 0. The two symbols 
Gsssss and Gfffffff therefore determine distinct paths between 
the same two points in pitch-class space.  

1.20 Indeed, there is an isomorphism between letter names that 
share a letter and unidirectional paths in pitch-class space that 
share a starting point. Let L be a letter naming a pitch class p in the 
basic scale, and let q be any other pitch class. Let L* stand for the 
set of letter names appending accidentals to L. Then there exists a 
unique letter name in L* corresponding to every distinct uni-
directional path from p to q. Conversely, each letter name in L* 
that refers to q corresponds to a unique unidirectional path from p 
to q. For example, in the familiar system, there are an infinite 
number of ways to refer to pitch class 0 by appending accidentals 
to the letter name G: Gsssss (5 sharps), Gfffffff  
(7 flats), Gs17 (17 sharps), Gf19 (19 flats), and so on. Every 
unidirectional path between 7 and 0 corresponds to a unique letter 
name beginning with the letter “G,” and every letter name for pitch 
class 0 beginning with the letter “G” corresponds uniquely to such 
a path.  

1.21 It is natural to appeal to paths in pitch-class space in attempting 
to understand the familiar system of pitch-class letter names. These 
paths are interesting in themselves, however, and we can refer to 
them without using letter names. Any real number x can be 
associated with a unidirectional path in pitch-class space, with 
positive numbers corresponding to ascending paths and negative 
numbers corresponding to descending paths. The absolute value of 
x corresponds to the length of the path as measured in (scale-
independent) semitones (see §1.6). I will call this the scale-
independent way of referring to paths in pitch-class space. In order 
to distinguish paths from pitch classes, I use boldface type for the 
former. Thus the symbol “1” refers to a path one semitone long 
that moves in the ascending pitch-class direction. “–11” refers to a 
path that descends by 11 semitones. Numbers greater than or equal 
to 12 or less than or equal to –12 indicate paths that move at least 
one complete turn around the pitch-class circle. Thus “24” refers to 
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the path that moves two complete turns around the pitch-class 
circle in the ascending direction, returning to its starting point. 
Compound terms like “a +b” refer to the path b that starts at point 
a.24 Thus “1 +5” refers to the path that starts at pitch class 1 and 
moves five ascending semitones to pitch class 6. It is clear that 
there is a straightforward translation between this purely numerical 
system and the letter-based system we have been investigating.25 

1.22 Paths in pitch-class space generalize the familiar notion of 
“pitch-class interval.” A traditional pitch-class interval can be 
reinterpreted as the shortest ascending path between two points in 
pitch-class space. Thus the shortest ascending path between pitch 
classes 0 and 2 is 2, the shortest ascending path between pitch 
classes 3 and 2 is 11, and so forth. The system described in §1.21 
has names for these paths and many more besides: it allows us to 
specify any of the unidirectional paths connecting any two pitch 
classes. It therefore extends the pitch-class intervals by providing 
us an infinite number of transformations between any two pitch 
classes.26 

                                                 
24 Thus “a” refers to a pitch class, while “+b” refers to a path. See Lewin 
1987 on the difference between labels for pitch classes and labels for 
pitch class intervals. 
25 There are two important differences between letter names and the 
numerical labels for paths described in §1.21. First, letter names allow us 
to refer only to paths beginning with elements of the basic scale, while 
numbers allow us to refer to paths with arbitrary starting points. Second, 
letter names measure length using chromatic scale-steps, while numbers 
use scale-independent semitones. Of course in the familiar system the 
two methods of measuring path length are equivalent. 
26 David Lewin (1987) famously conceived of intervals, not as 
“distances” or “relations” between fixed points in an unchanging space, 
but rather as active ways of transforming one point in the space into 
another. This nicely captures the motivation for thinking about paths in 
pitch-class space. Curiously, however, Lewin’s concept of a “Generalized 
Interval System” specifically requires that there be only one interval 
between any two musical objects. Thus he would not consider the set of 
paths in pitch-class space to represent a “Generalized Interval System” 
for the pitch classes. I believe that Lewin was overly restrictive here; his 
definition of a “Generalized Interval System” does not fully embody the 
transformational attitude he espoused. 
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1.23 We can also apply the symbols “s” and “f” to notations for 
pitches in the familiar staff-and-clef system.27 Figure 5 shows 
several different ways of notating pitch 72 in the familiar system. 
Once again, any pitch can be notated in an infinite number of ways. 
(This contrasts with the numerical system for labeling pitches, in 
which every pitch has a unique name.) Conversely, we can transform 
a notation for any pitch into a notation for any other pitch by 
adding or removing the appropriate number of accidentals. For 
instance, we can transform a symbol for pitch 67 into a symbol for 
pitch 72 by adding five sharps.28 Note, however, that in pitch-class 
space, a notation for pitch class 7 can be transformed into a notation 
for pitch class 0 in an infinite number of ways: we can add five 
sharps, or seven flats, or seventeen sharps, or nineteen flats, and so 
on. By contrast, in pitch space, given a notation for pitch 67, we 
must add precisely five sharps to transform it into a notation for 
pitch 72.29 

 
Figure 5. Four equivalent notations for pitch 72 

 

  
 
 
                                                 

27 In addition to the staff-and-clef system, there is also “scientific pitch 
notation,” which combines a letter name, accidentals, and a Roman numeral 
conveying octave information. Somewhat counterintuitively, the notation 
“Cf4” is typically used to mean “the pitch one chromatic step below 
C4,” rather than “the instance of pitch class Cf lying in octave number 
4.” Thus Cf4 is enharmonically equivalent to B3, not B4. A more logical 
system would place the octave number before the accidental, as in “C4f.” 
This would show that the letter name is first combined with the octave 
number to determine a pitch, which is subsequently altered by the 
application of accidentals. 
28 “Adding five sharps” here is shorthand for a process that may involve 
removing flats, adding sharps, or both. Thus to transform Aff4 (pitch 
67) into Asss4 (pitch 72), we remove two flats and add three sharps, for 
a total change of five accidentals. 
29 This is because the group of unidirectional paths acts simply transitively 
on pitches, but not on pitch classes. 
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II. Voice leadings as generalized key signatures 
 

2.1 Section I generalized the basic features of Western musical 
notation. In Section II, I show how to interpret key signatures 
within this generalized system. We will see that key signatures are 
collections of paths in pitch-class space, and hence can be 
interpreted as voice leadings between pitch-class sets. Every key 
signature determines a unique voice leading between pitch-class 
sets; and conversely, every voice leading can be expressed as a key 
signature. I conclude by suggesting that generalized key signatures 
provide a more flexible alternative to familiar conceptions of voice 
leading between pitch-class sets. 

2.2 A key signature places accidentals on staff positions at the 
beginning of a measure or staff system. These accidentals are 
understood to apply by default to all staff positions corresponding to 
that letter name. Figure 6 illustrates. Here, one and the same notated 
key signature—and one pattern of letter names—is interpreted in 
the context of two different basic scales. Figure 6(a) is in Bf major 
in the familiar system; the notation represents letter name series 
(Bf, Ef, Bf, Ef), indicating the pitch-class series (10, 3, 10, 3) and 
pitch series (70, 63, 58, 51). Figure 6(b) presents the same notated 
key signature, and the same series of letter names, in the context of 
the basic scale (9, 0, 2, 4, 7). (We imagine this scale embedded 
within the usual chromatic.) As always, the C clef indicates the 
third element of the basic scale, here pitch class 2.  

 
Figure 6. The same notated key signature interpreted with  

respect to two different scales 
 

 a) the familiar system  
 

   
 

 basic scale (9, 11, 0, 2, 4, 5, 7)  
 letter names (Bf, Ef, Bf, Ef)   
 chromatic scale {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}  

pitch classes (10, 3, 10, 3)  
pitches (70, 63, 58, 51) 
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Figure 6 (continued). 
  

 b) with a pentatonic basic scale 
 

   
 

 basic scale (9, 0, 2, 4, 7) 
 letter names (Bf, Ef, Bf, Ef) 
 chromatic scale {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}  
 pitch classes (11, 6, 11, 6) 

pitches (71, 66, 59, 44) 
 

 
Since the basic scale has only five elements, the space below the 
top line in Figure 6(b) corresponds to letter name “A.” Likewise, 
the space above the bottom line indicates letter name “E.” The 
integer notation under the clef indicates that it refers to the pitch 
62. With a little work, we can determine that the notation 
represents the letter-name series (Bf, Ef, Bf, Ef), corresponding to 
pitch classes (11, 6, 11, 6) and pitches (71, 66, 59, 44).30

2.3 We will require that a key signature not assign conflicting 
accidentals to staff positions representing the same letter name. 
Thus a single written key signature may be acceptable relative to 
some basic scales, but not others. The notation shown in Figure 7 
is acceptable in the familiar system, since it indicates Fs and Bf. It 
is unacceptable when the basic scale contains only four elements, 
since it then indicates Bs and Bf—impermissibly assigning two 
different accidentals to the same letter name. 

                                                 
30 Note that one and the same written key signature transposes the C 
major scale down by whole step to Bf major, while transposing the C 
pentatonic scale up by whole step to D major. The exact orthographic 
resemblance between the two key signatures is something of a coincidence: 
pentatonic key signatures involving three or more accidentals no longer 
look exactly like their diatonic counterparts. However, there is a reason 
why it takes a flat to transpose a pentatonic scale up by fifth. This is 
because the pentatonic scale is the diatonic scale’s complement: a voice 
leading associating two fifth-related pentatonic scales by way of a single 
descending semitone determines a complementary voice leading associating 
two fifth-related diatonic scales by ascending semitone. 
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Figure 7. A key signature can be acceptable 
relative to some scales, but not others 

 

 
 

2.4 I will ignore questions about which specific staff lines to use 
in notating a given key signature. That is a matter of orthographic 
convention, tangential to the current inquiry. I will also ignore 
questions about pitch priority. I will say that one and the same key 
signature is used to denote two different keys. For example, in the 
familiar system, the one-sharp key signature is used to denote both 
E minor and G major. (It can also be used to denote Fs locrian, A 
dorian, B phrygian, and so on.) I will refer to key signatures using 
major-key names, describing the one-sharp signature as “G major,” 
and so on. This is merely terminological shorthand; it is not meant 
to privilege the major key over its relative minor key or any of the 
other modes. 

2.5 Key signatures can be represented as ordered n-tuples of real 
numbers such that the ith element of the n-tuple indicates the 
accidentals applied to the ith letter name in the system. Positive 
numbers refer to sharps and negative numbers refer to flats. Thus, 
in the familiar system the 7-tuple (0, –1, 0, 0, 0, 0, 0) refers to the 
standard key signature for F major: the letter names A, C, D, E, F 
and G have no accidentals; while the letter name B has one flat, as 
indicated by the number –1. 

2.6 We have now reached the crux of our investigation. For key-
signature n-tuples determine collections of paths in pitch-class 
space. That is, they associate pitch classes in the basic scale with 
pitch classes in the “target” scale by way of specific routes through 
pitch-class space. For example, the standard key signature for F 
major, (0, –1, 0, 0, 0, 0, 0), holds six pitch classes constant (moves 
them by zero chromatic scale steps) and takes pitch class 11 to 
pitch class 10 by one descending chromatic scale step. This key 
signature is not the same as the key signature (0, 11, 0, 0, 0, 0, 0), 
which moves pitch class 11 to 10 by eleven ascending chromatic 
steps. Consequently, the two notations shown in Figure 8 are not 
equivalent: the first pitch shown in Fig. 8(a) is one octave lower 
than the first pitch shown in Fig. 8(b); the interval shown in Fig. 
8(a) sounds like an ascending major second, while that shown in 
Fig. 8(b) sounds like a descending minor seventh.  
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Figure 8. Two non-equivalent key signatures          
 

           a)                                         b)  

            
 

2.7 Observe that in the familiar, equal-tempered system, a key 
signature’s target scale can be obtained by adding the ith component 
of the key signature to the ith component of the basic scale, and 
reducing the result modulo 12Z. For instance, adding the F major key 
signature (0, –1, 0, 0, 0, 0, 0) to the basic scale (9, 11, 0, 2, 4, 5, 7) 
produces the F major collection (9, 10, 0, 2, 4, 5, 7). We can write 
 
   (9, 11, 0, 2, 4, 5, 7) + (0, –1, 0, 0, 0, 0, 0) ≡ (9, 10, 0, 2, 4, 5, 7) modulo 12Z (2) 

 
which instantiates the more general schema: 

 
 basic scale + key signature ≡ target scale modulo 12Z  (3) 
 
This schema works only because in the familiar system the length 
of a path, as measured in terms of chromatic scale steps, happens 
to be the same as the length of the path as measured in scale-
independent semitones (see §1.6 and §1.21). In other chromatic 
systems, one needs to translate the key signature n-tuple, which is 
measured in chromatic scale steps, into an n-tuple of scale-
independent semitonal path lengths.31

2.8 I will now demonstrate that key signatures are extremely 
closely-related—indeed, virtually equivalent—to voice leadings 
between pitch-class sets. It follows that Western musicians are 
accustomed to working with such voice leadings, although they 
typically have not realized that this is what they are doing. This is 
significant, since some theorists are suspicious of the very notion 

                                                 
31 For example, in an equal-tempered six-note chromatic system, one 
chromatic scale-step corresponds to a path that is two (scale-independent) 
semitones long. Thus it is necessary to multiply the values in the key 
signature n-tuple by two before adding them to the n-tuple representing 
the basic scale. For non-equal-tempered chromatic systems, the translation 
requires more work, since “one chromatic step” can represent various pitch-
class distances. 
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of a “voice leading between pitch-class sets.”32 My hope is that the 
present discussion, by demonstrating that we need to use these 
voice leadings in order to explain elementary features of our 
system of musical notation, will help to overcome such skepticism. 

2.9 To understand the relationship between key signatures and 
voice leadings, it is necessary to distinguish what I will call the 
path-specific and path-neutral conceptions of voice leading. As we 
will see, key signatures correspond to path-specific voice leadings. 
Path-neutral voice leadings are slightly more general than key 
signatures; they can be understood as equivalence classes of 
closely related path-specific voice leadings. 

2.10 A chord is a multiset of pitch classes. A path-specific voice 
leading between two chords maps every element of the first chord 
to some element of the second by way of a specific unidirectional 
path in pitch-class space; furthermore, for every element in the 
second chord, at least one element in the first chord is mapped to 
it, again by way of some specific unidirectional path in pitch-class 
space. Path-dependent voice leadings can be represented using 
equations that precisely mirror Equations 2 and 3 above: 

 
source chord + n-tuple of paths ≡ target chord modulo 12Z (4) 
 

Here, the “n-tuple of paths” is an n-tuple of real numbers indicating 
the direction and magnitude of paths in pitch-class space. (Note 
that we refer to these paths in the scale-independent way described 
in §1.21.) 

2.11 For example, the following equation determines a path-specific 
voice leading between the C diatonic and F diatonic collections 
 
   (9, 11, 0, 2, 4, 5, 7) + (0, –1, 0, 0, 0, 0, 0) ≡ (9, 10, 0, 2, 4, 5, 7) modulo 12Z (5) 

 
This voice leading holds six pitch classes constant, while moving 
pitch class B down by one semitone to Bf. It therefore represents 
what Richard Cohn calls a maximally smooth voice leading.33 Note 

                                                 
32 As will become clear in §§2.18-2.20 below, I believe this skepticism 
derives from the fact that previous theorists have not distinguished pitch-
class intervals from paths in pitch class space. Skeptical theorists have 
rightly felt that there is something problematic about this. 
33 See Cohn 1996. A “maximally smooth voice leading” is one in which 
just a single note moves, and it moves by only one semitone. 
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that, as in §1.21, I use boldface to designate pitch-class paths. Note 
also that the voice leading shown in Equation 5 is the same path-
specific voice leading indicated by the equation 

 
   (0, 2, 4, 5, 7, 9, 11) + (0, 0, 0, 0, 0, 0, –1) ≡ (0, 2, 4, 5, 7, 9, 10) modulo 12Z  (6) 
 
This is because Equations 5 and 6 both associate the same pitch 
classes in the source chord with the same pitch classes in the target 
chord, along the same paths through pitch-class space. Only the 
order of the respective n-tuples changes. This difference is purely 
orthographic. Chords are intrinsically unordered objects, and voice 
leadings simply specify how their elements are to be related. 

2.12 Equation 7 displays another path-specific voice leading 
between pitch-class sets: 

 
(0, 4, 7) + (–1, 0, 0) ≡ (11, 4, 7) modulo 12Z          (7) 

 
This represents what neo-Riemannian theorists might call the “L 
voice-leading”: the third and fifth of the C major triad are held 
constant, while the root moves down by semitone. 

2.13 Figure 8 showed that a key signature specifies not just which 
pitch classes are to be related, but also how they are to be related. 
Thus it is clear that any key signature determines a unique path-
specific voice leading between the basic scale and the target scale. 
Conversely, any path-specific voice leading can be expressed using 
key signatures. Begin by writing the path-specific voice leading in 
the form 

 
(a1, a2, …, an) + (p1, p2, …, pn) ≡ (b1, b2, …, bn) modulo 12Z 

 
Arrange the ai so that they form an acceptable basic scale.34 
Choose a chromatic scale containing all the ai and bi. Translate the 
path names pi, which are independent of any chromatic scale, so 
that they identify paths in terms of chromatic scale steps. Then apply 
accidentals to a staff position representing each element ai in the 

 
34 Note that we can choose to call any of the ai by the letter name “A.” 
Consequently, there are multiple ways to arrange the ai so that they form 
an acceptable basic scale. Moreover, there are multiple ways to embed 
this basic scale in a larger chromatic collection. Therefore, there will be 
more than one key signature corresponding to a single voice leading. 
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source chord so that the pitch class ai moves to pitch class bi by the 
appropriate path.35  

2.14 For instance, Figure 9 provides a key signature for the neo-
Riemannian “L voice leading” represented by Equation 7. The 
basic scale is (0, 4, 7). The letter name “A” refers to pitch class 0, 
letter name “B” refers to pitch class 4, and letter name “C” refers 
to pitch class 7. The chromatic scale is the familiar one. A single 
flat is applied to a staff line representing letter name A. This moves 
pitch class 0 down by one chromatic scale step to pitch class 11. 
The remaining notes in the basic scale are held constant. 

 
Figure 9. A key signature for the “L voice leading” 

 
 

 

basic scale (0, 4, 7) 
path n-tuple (–1, 0, 0) 
key signature (–1, 0, 0)
target scale (11, 4, 7) 

    
2.15 Key signatures are path-specific voice leadings. Recent theory, 

however, has primarily been concerned with what I will call “path-
neutral voice leadings.” A path-neutral voice leading is a mapping 
between the pitch classes of two chords that does not specify paths 
by which they are to be associated. A path-neutral voice leading 
simply associates every element of one chord with some element 
of the other. We can notate path-neutral voice leadings using the 
notation  

 
(a1, a2, …, an)→(b1, b2, …, bn) 

 
This indicates that the ith pitch classes in each n-tuple are 
associated by the voice leading. Thus the notation (0, 4, 7)→ 
(11, 4, 7) indicates that pitch classes 0, 4, and 7 are associated with 
pitch classes 11, 4, and 7, respectively. 

2.16 The voice leading (0, 4, 7)→(11, 4, 7) is the same voice 
leading as the voice leading (0, 7, 4)→(11, 7, 4), since they both 

                                                 
35 Note that we can represent every voice leading as a key 
signature only because we allowed multisets to serve as the basic 
scale. Had we not done so, we would be unable to use key 
signatures to represent voice leadings like (0, 4, 7, 0) + (2, 1, 0, –1) ≡ 
(2, 5, 7, 11) modulo 12Z. 
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associate the same pairs of pitch classes in the source and target 
chords. Once again, this is because chords are unordered objects 
and voice leadings merely specify which elements are related. 
However, the voice leading (0, 4, 7)→(4, 7, 11) is not the same as 
(0, 4, 7)→(11, 4, 7), since the two voice leadings relate different 
pitch classes. 

2.17 It is clear that any path-specific voice leading (or, equivalently, 
key signature) determines exactly one path-neutral voice leading, 
since it associates every element of the basic scale with some 
element of the target scale and vice versa. Conversely, any path-
neutral voice leading corresponds to an infinite class of path-specific 
voice leadings (or, equivalently, key signatures). This is because 
there are an infinite number of unidirectional paths connecting any 
two points in pitch class space—as we saw in §1.20. 

2.18 The question now arises: when theorists talk about “voice 
leading,” are they thinking about path-specific or path-neutral 
voice leadings? The question is complicated. Explicit discussions 
of voice leading, as for instance in Lewin (1998), Morris (1998) 
and Straus (2003), tend to suggest the path-neutral conception. 
(Lewin, for example, defines a voice leading as a set of ordered 
pairs of pitch classes.) However, all of these theorists accept the 
traditional notion of “pitch-class interval,” according to which 
there is only one interval between any two pitch classes. This leads 
them, on occasion, to speak as if pitch-class intervals correspond to 
specific paths in pitch-class space. For this reason, much recent 
writing about voice leading is de facto concerned with path-
specific voice leadings, even while using path-neutral terminology.  

2.19 For example, when neo-Riemannian theorists talk about the 
voice leading (0, 4, 7)→(11, 4, 7), they are not simply asserting 
that pitch class 0 is mapped to pitch class 11. They also imagine 
that this mapping corresponds to a single-semitone displacement— 
that it is, as they say, a “maximally smooth” voice leading in which 
one note moves by one semitone. This notion of a pitch class “moving 
by” a semitone clearly suggests a path in pitch-class space. Certainly, 
neo-Riemannian theorists do not imagine the L voice leading to be 
one in which pitch class 0 moves to pitch class 11 by way of 
eleven ascending semitones. (After all, this is not a particularly 
efficient voice leading, and it involves motion by considerably 
more than one semitone.) Such examples suggest that theorists 
have often operated with the path-specific conception of voice 
leading, even though they have not always realized it, and even 
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though they have not always found the most appropriate language 
in which to express this notion. 

2.20 This observation echoes a complaint commonly made against 
the very notion of “voice leading between pitch-class sets”: that 
pitch class is too crude a tool for investigating voice leading, since 
we cannot distinguish the myriad ways in which one pitch class 
can move to another. Our investigation provides a response to this 
complaint: as long as we are thinking about paths in pitch-class 
space, rather than intervals, then we can indeed distinguish the 
various ways in which one pitch class can move to another. And as 
long as we are thinking about path-specific voice leadings, then we 
can distinguish a variety of voice leadings corresponding to the 
same, path-neutral voice leading. What is remarkable is that we 
have been forced to draw these distinctions simply in order to 
understand elementary features of Western musical notation. For 
path-specific voice leadings are little more than generalized key 
signatures. Thus the pedantry of Section I has borne fruit in a 
genuinely new theoretical tool for understanding voice leading. 

 
III. The three virtues 

 
3.1 The remainder of this paper treats key signatures and voice 

leadings in tandem. Key signatures, rather than being the central 
focus of our investigation, will now serve to illustrate more general 
points about voice leading as such. In this section, I describe three 
virtues that a voice leading or key signature can have: avoidance of 
voice crossings, preservation of common tones, and minimization 
of the “size” of the voice leading. I show that, for a wide range of 
measures of voice-leading size, it is always possible to find a minimal 
voice leading that has no voice crossings. I also demonstrate that it 
is not always possible to preserve common tones while avoiding 
voice crossings.  

3.2 It is highly desirable that a key signature not destroy the 
analogical relation between the aural and the visual. In other words, 
what sounds like a descending pitch interval should not be notated 
as an ascending interval. Thus it is reasonable to forbid key signatures 
such as (0, 0, 0, 0, 1, –1, 0) in the familiar system, which include 
both Es and Ff. Such key signatures make it difficult to read and 
conceptualize music. Figure 10 illustrates: here, what looks like an 
ascending step here sounds like a falling semitone. 
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Figure 10. A very confusing key signature 
 

 
 

Figure 11. Key signatures whose paths cross destroy the 
analogical relation between the aural and visual 

 
a) the standard F major key signature 

 

 
 

  b) the alternative shown in Fig. 8(b) 
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3.3 A key signature preserves the analogical relation between the aural 
and visual only if it determines a collection of paths in pitch-class 
space that do not intersect.36 Figure 11(a), for example, represents 
the familiar key signature for F major. The inner circle corresponds 
to the basic scale, and the outer circle corresponds to the target scale; 
time therefore progresses radially outward. The lines represent the key 
signature’s paths, which do not intersect. Figure 11(b) corresponds 
to the key signature shown in Figure 8(b). Here, B is mapped to Bf 
by eleven ascending semitones, along a path that does intersect the 
other paths in the key signature. As Figure 8 demonstrated, the first 
key signature preserves the analogical relation between the visual and 
the aural; the second does not. Thus we have good reason to be interested 
in key signatures whose associated voice leadings are crossing-free. 

3.4 Second, we might prefer key signatures that use the fewest possible 
number of sharps or flats in taking the basic scale to the target 
scale.37 All other things being equal, such key signatures maximize 
legibility. For example, it is much easier to understand the key 
signature of D-major, which uses just two accidentals, than the 

                                                 
36 We will not consider two distinct paths to intersect if they meet only at an 
endpoint. Thus, the paths “2 –1” and “2 +1” do not cross, nor do “3 +1” 
and “5 –1” (the notation here is, of course, the one used in §1.21). When 
the basic scale contains pitch-class duplications, however, complications 
arise: if letter names B and C refer to the same pitch class, then {Bf, C} 
preserves the analogical relation between the aural and the visual, whereas 
{B, Cff} does not. This despite the fact that both pairs of letter names 
indicate crossing-free paths and refer to the same pair of pitch classes. 
(Note that the second pair has an extra flat, which reflects the size-zero 
“step” between B and C.) Thus avoiding crossings is necessary but not 
sufficient for preserving the analogical relation between the aural and the 
visual. In the special case where the basic scale has duplications, we must 
further require the key signature’s paths to be appropriately distributed 
among letter names referring to the same pitch class. We can express this 
by stipulating that the key signature not be one that would have voice 
crossings if the “duplicated” notes were very close together (and still in 
letter-name order) rather than being exactly identical. 
37 When determining the key signature with “the smallest possible number 
of accidentals,” we hold the basic and chromatic scales fixed; given a 
basic scale B and a chromatic scale C we are interested in the key signatures 
that use as few accidentals as possible to refer to target scale T. 
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enharmonically equivalent key signature of Css major—which uses 
14. 

3.5 When the chromatic scale is equal-tempered, a key signature 
minimizes the use of accidentals if and only if its associated path-
specific voice leading is as small as possible according to the most 
common measure of voice-leading size. In such cases the number 
of sharps or flats used in a key signature is proportional to the 
aggregate semitonal length of all the paths in the voice leading. 
“Aggregate semitonal length” is a common measure of size that is 
called the L1 or “taxicab” norm by mathematicians, and “smoothness” 
or “voice leading efficiency” by music theorists.38  

3.6 Third, we might like key signatures to maximize the number 
of pitch classes written the same way as they are written in the 
basic scale. This facilitates the common practice of “pivot chord” 
modulation, or modulation by way of chords common to two keys. 
For example, the letter names {E, G, B, D} are used by both the C 
major and D major key signatures. By contrast, the C major and Css 
major key signatures contain no identically-notated “pivot notes.” 
Of course, both scales contain the pitch classes {4, 7, 11, 2}; 
however, they notate them with different letter names. 

3.7 A key signature maximizes “pivot notes” if and only if its 
associated voice leading maximizes the number of common tones, 
or zero-semitone paths. For example, the voice leading  
 

(9, 11, 0, 2, 4, 5, 7) + (0, 0, 1, 0, 0, 1, 0)  ≡ (9, 11, 1, 2, 4, 6, 7) modulo 12Z 
 

corresponding to the standard key signature for D major, has five 
zero-semitone paths. By contrast, the voice leading  
 

(9, 11, 0, 2, 4, 5, 7) + (2, 2, 2, 2, 2, 2, 2) ≡ (11, 1, 2, 4, 6, 7, 9) modulo 12Z 
 

corresponding to the standard key signature for Css major, contains 
no zero-semitone paths. Every zero-semitone path represents a 

 
38 Roeder 1984, Lewin 1998, Cohn 1998, Straus 2003. There are other 
reasonable ways to measure voice-leading size as well: one might take 
the size of a voice leading to be the length of its largest path; or the square 
root of the sum of the squares of its path lengths. In the remainder of the 
paper, I will assume the “smoothness” metric. This is merely an expositional 
device. The central results and techniques of this paper are consistent 
with a very wide range of measures of voice-leading size. 
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“pivot note.” The first key signature maximizes “pivot notes,” while 
the second does not. 

3.8 We now ask: which of these three virtues are mutually compatible? 
Can one preserve the analogical relation between the aural and 
visual, minimize the use of accidentals, and maximize pivot notes 
at the same time? Here, our inquiry into key signatures arrives at a 
fundamental question in the theory of voice leading. For we are 
asking whether it is possible simultaneously to avoid voice crossings, 
preserve common tones, and minimize voice-leading size. All three 
qualities have long been considered desiderata by theorists and 
pedagogues of voice leading.39 

3.9 For an extremely wide range of methods of measuring voice-
leading size, including the L1 (“smoothness”) norm, it can be 
shown that there will be a minimal path-dependent voice leading 
between any two multisets whose paths do not cross. (As the 
Appendix explains, this follows from the triangle inequality.) 
Thus, given any basic scale B and any chromatic scale C, we can 
always find a key signature for any target scale T (of the same 
cardinality as B) that minimizes accidental-use while preserving 
the relation between the aural and visual.40 Since the preservation 

                                                 
39 Of course, traditional rules of voice leading mandate the avoidance of 
voice crossings in pitch- rather than pitch-class space. However, the two 
are intimately connected. Crossing-free voice paths in pitch-class space 
are precisely those that will never have voice crossings when instantiated 
in pitch space. Similarly, pitch-space voice leadings between chords 
spanning less than an octave will be crossing-free only if they instantiate 
voice leadings that have no crossings in pitch-class space. 
40 When the chromatic scale is not equal-tempered, then “smoothness” is 
not necessarily proportional to the number of accidentals used in a key 
signature. However, we can ignore this complication. The result stated here—
that it is always possible to preserve the analogical relation between the 
visual and the aural while minimizing accidental-use—holds for any 
chromatic scale. This is because we can transform an equal-tempered 
chromatic scale into any other scale of the same cardinality without 
changing the “size” of any key signature (as measured in accidentals), 
without introducing or removing voice crossings from any key signature, 
and without causing two key signatures that refer to the same target scale 
to refer to different target scales. (I simply state these facts here, without 
proof.) It follows that we can extend our reasoning from equal-tempered 
chromatic scales to all chromatic scales of the same cardinality. 
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of the analogical relation between the aural and visual is extremely 
important when notating music, I will henceforth consider only key 
signatures that preserve this relationship. 

3.10 Now consider the third virtue: is it possible to maximize the 
number of “pivot notes” while preserving the analogical relation 
between the aural and visual? It is easy to construct examples 
showing that we cannot. For instance, the C major, Fs major, and 
Gf major scales all contain the pitch classes {5, 11}. However, 
they notate these pitch classes with different letter names: in C 
major they are notated {F, B}, in Fs major they are notated {Es, 
B}, and in Gf major they are notated {F, Cf}. A little thought will 
show that there can be no familiar-system key signature for the 
collection {6, 8, 10, 11, 1, 3, 5} in which the pitches {5, 11} are 
assigned the letter names {F, B}, and in which the analogical 
relation between the aural and visual is preserved.  

3.11 However, it is possible to minimize accidental-use while 
preserving common tones. Such key signatures may destroy the 
analogical relationship between the aural and the visual; when they 
do, they will involve longer paths (double sharps, triple flats, and 
other “higher” accidentals) than their crossing-free alternatives. 
For instance, in the familiar system, there is a six-accidental key 
signature for the diatonic collection {6, 8, 10, 11, 1, 3, 5} that notates 
pitch classes 5 and 11 as F and B: (1, 0, 1, 1, 2, 0, 1) or {As, B, Cs, 
Ds, Ess, F, Gs}. This key signature uses the same number of 
accidentals as the standard key signatures for Fs/Gf major. 
However, it uses one double sharp, whereas the standard major key 
signatures use none. It also contains a notated ascending step, Ess–
F, that sounds like a descending pitch interval.  

3.12 We can be assured of finding minimal voice leadings that 
maximize common tones only when we use the L1 and a few other 
related measures of voice-leading size.41 There are many perfectly 
reasonable ways of measuring voice-leading size that do not enable 
us always to find such voice leadings; thus these two virtues are 
only weakly compatible. By contrast, avoiding voice crossings and 
minimizing voice-leading size are strongly compatible: virtually 

 
41 This is because such measures tend to mandate voice crossings, thereby 
violating the triangle inequality. This makes them somewhat less useful—
though not in principle useless. Exactly why we should want measures of 
voice leading size to obey the triangle inequality is a complicated matter 
that deserves careful attention. Callender (2005) discusses this. 
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every useful measure of voice-leading size—including all of those 
actually employed by music theorists—allows us to find minimal 
voice leadings that are crossing free. This is because measures of 
voice-leading size typically satisfy the triangle inequality, and the 
triangle inequality is in turn closely connected to the avoidance of 
voice crossings. From the standpoint of the general theory of voice 
leading, then, we may have reason to consider avoidance of voice 
crossings more fundamental than preservation of common tones.  

 
IV. Minimal voice-leadings and the interscalar path matrix 

 
4.1 Section IV considers a central question in the theory of voice 

leading: given two chords, how does one find a minimal voice 
leading between them?42 I begin by describing a solution to the 
general problem. I then show that the standard system of diatonic 
key signatures in fact implements this solution. Consequently, there 
is a minimal voice leading between any two diatonic collections 
that is equivalent to a familiar key signature. 

4.2 The Appendix shows that for a wide variety of methods of 
measuring voice-leading size, there will always be a minimal voice 
leading between any two chords that is crossing-free. Thus to find 
a minimal voice leading between two chords we need only search 
the crossing-free voice leadings connecting them. There are in fact 
an infinite number of possibilities.43 Fortunately, it is possible to 
represent these voice leadings with what I call an interscalar path 
matrix. Using such matrices, it is straightforward to find a minimal, 
crossing-free voice leading between arbitrary chords. 

4.3 Let the “source” and “target” chords be multisets of equal 
cardinality. Order each multiset as described in §1.7, labeling each 
with “scale degree numbers” (1, 2, …, n) rather than letter names 

                                                 
42 For the rest this paper, the term “voice leading” will always refer to 
bijective voice leadings. These voice leadings map every element in the 
source chord to one and only one element in the target. That is because 
key signatures always correspond to bijective voice leadings from the 
basic scale to the target scale. (Of course these scales themselves may 
contain duplications.) The problem of finding minimal non-bijective voice 
leadings between arbitrary chords is more difficult than the problem 
discussed here. Its solution is a matter for another paper. 
43 This is because we can add 12 to all the paths in a voice leading without 
creating any new crossings. 
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(A, B, C, …). The interscalar path matrix is a matrix whose rows 
contain the paths associated with path-specific, crossing-free voice 
leadings from source to target.44 The jth element of row i is a path 
that takes scale degree j in the source chord to scale degree j + i – 1 
in the target. (The quantity j + i – 1 is to be interpreted modulo the 
cardinality of the two chords: in a seven-note scale, scale degree 8 
is the same as scale degree 1.) The resulting matrix can be used to 
determine every crossing-free voice leading between the chords 
generating it. 
 

Table 1. A interscalar path matrix for the diatonic scale 
 

0  steps 0 0 0 0 0 0 0 
1  step 2 1 2 2 1 2 2 
2  steps 3 3 4 3 3 4 4 
3  steps 5 5 5 5 5 6 5 
4  steps 7 6 7 7 7 7 7 
5  steps 8 8 9 9 8 9 9 
6  steps 10 10 11 10 10 11 10

 
 

4.4 Table 1 presents an interscalar path matrix relating the basic 
scale to itself. (Since the source and target chords are the same, we 
could drop the prefix “inter-,” describing Table 1 as a scalar path 
matrix.) Scale degrees are numbered from pitch class 9, and 
correspond to the degrees of the A natural-minor scale. The first 
row of the matrix contains the zero-semitone paths that take scale-
degree x in the basic scale to itself. The second row contains paths 
taking scale degree x in the basic scale to scale degree x + 1 in the 
scale. This voice leading transposes the basic scale up by one 
diatonic step, sending A to B by 2 ascending chromatic scale steps, 
B to C by 1 ascending chromatic step, C to D by 2 chromatic steps, 
and so forth. Each of the remaining rows transposes the notes of 
the basic scale up by some fixed number of steps. The columns of 

                                                 
44 We can measure these paths either in the scale-dependent or scale-
independent manner, depending on whether we are most interested in key 
signatures or voice leadings. In the familiar system, of course, the two are 
equivalent. 
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the matrix contain the modes of the basic scale, indicating that this 
scalar path matrix is what serial theorists call a rotational array.45 

4.5 Table 1 is complete in the following sense: for any note of the 
basic scale, there is a cell of Table 1 containing a path between it 
and any other note of the basic scale. Thus we can specify a voice 
leading (i.e. row) in Table 1 simply by choosing an ordered pair of 
notes in the basic scale. The completeness of Table 1 implies that 
we can use it to generate any bijective crossing-free voice leading 
between the basic scale and any other diatonic collection. To see 
why this is so, consider the effect of adding a constant value to a 
row of Table 1. Adding 1 to all the cells in any row transposes the 
target chord up by semitone; subtracting 1 transposes the target 
chord down by semitone. Adding 12 does not transpose the target 
chord, but extends each path in the voice leading by one ascending 
turn around the pitch-class circle. Thus Table 1 allows us to generate 
a crossing-free voice leading that maps any pitch class x in one 
diatonic collection to any pitch class y in another, along any 
unidirectional path p connecting them in pitch-class space. There is 
only one such crossing-free voice leading for any (x, y, p). It 
follows that the rows of Table 1 generate all the bijective crossing-
free voice leadings between diatonic collections. 

4.6 Suppose, now, that we want to find a minimal voice leading 
between the C major collection and its transposition by t semitones. 
It suffices to find that row of Table 1 whose values, when added to 
t, are closest to 0 modulo 12Z.46 As we have seen, adding t to each 
item in this row transposes the basic scale by t semitones; the result 
is a crossing-free voice leading between the desired collections. 
We then add the quantity 12c, where c is an integer, that brings the 
items in the row as close as possible to 0.  

                                                 
45 See Morris 1988. An interscalar path matrix differs from a rotational 
array in two ways. First, the source and target chords must be in scalar order, 
as described in §1.7. Rotational arrays, by contrast, are defined for arbitrary 
orderings. Second, the entries of an interscalar path matrix refer to paths 
in pitch-class space rather than traditional pitch-class intervals. Thus the 
interscalar path matrix shown in Table 3 is not a rotational array. 
46 “Closeness” implies some metric of voice-leading size. Since we are 
assuming the L1 “smoothness” metric, we want to minimize the quantity 
Σδ(xi + t, 0), where t is the transposition in question, the xi are the elements 
of the row, and δ represents “distance” as measured according to footnote 9.  
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4.7 For example, suppose we wish to find a minimal voice leading 
between the C major and G major collections. G major is T7 of C 
major, the “target scale” used to generate Table 1.47 We therefore 
look for that row of Table 1 whose values, when added to 7, are closest 
to 0 modulo 12Z. Inspection shows that this is the fourth row. Adding 
7 to these values gives us (12, 12, 12, 12, 12, 13, 12). Subtracting 12 
yields (0, 0, 0, 0, 0, 1, 0). This corresponds to the voice leading 
 

(9, 11, 0, 2, 4, 5, 7) + (0, 0, 0, 0, 0, 1, 0)  ≡ (9, 11, 0, 2, 4, 6, 7) modulo 12Z 
 
which is the minimal voice leading between the C major and G major 
collections. (Here and throughout, we continue to assume the L1 
“smoothness” norm.) Six pitches are held fixed, while F moves up 
by semitone to Fs.  

4.8 Here’s another example. Suppose we wish to find a voice 
leading between the C major and Ef major collections. Ef major is 
T3 of C major. We look for that row of Table 1 whose values, 
when added to 3, come closest to 0 modulo 12Z. This is the sixth 
row. Adding 3 to these values yields (11, 11, 12, 12, 11, 12, 12). 
Subtracting 12 from these gives us (–1, –1, 0, 0, –1, 0, 0). This 
corresponds to  
 

(9, 11, 0, 2, 4, 5, 7) + (−1, −1, 0, 0, −1, 0, 0)  ≡ (8, 10, 0, 2, 3, 6, 7) modulo 12Z 
 
which is the minimal voice leading between the C major and Ef 
major collections. 

4.9 The rows of the interscalar path matrix can also be understood 
as key signatures for the target scale.48 For example, the second 
row of Table 1, (2, 1, 2, 2, 1, 2, 2), is the key signature for Bs 
major. This key signature is enharmonically equivalent to C major, 
referring to the same pitch classes using different letter names: in 
C major, pitch class 0 is assigned the letter name C, while in Bs 
major it is assigned letter name Bs. Similarly, the third row of 

 
47 T7, of course, refers to transposition by seven semitones. Note also that 
the C major collection is both the source and target collection of Table 1. 
48 This fact was first noted by Hook (2004). (It follows from the fact that 
every path-specific voice leading corresponds to a key signature.) The 
description of key signatures as voice leadings, the use of interscalar path 
matrices to represent voice leadings, and the technique of calculating 
with them are my own.  
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Table 1, (3, 3, 4, 3, 3, 4, 4), is the key signature for Asss major. 
The remaining rows are key signatures for Gsssss (or Gs5) major, 
Fs7 major, Es8 major, and Ds10 major. All of these key signatures 
preserve the analogical relation between the aural and visual. 
(Obviously they do not minimize accidentals!) 

4.10 Adding 1 to each element in the key signature for X major 
transforms it into a key signature for Xs major; subtracting 1 from each 
element turns a key signature for X major into a key signature for 
Xf major. For example, the key signature for C major is (0, 0, 0, 0, 
0, 0, 0). The key signature for Cs major is (1, 1, 1, 1, 1, 1, 1). The 
key signature for Cf major is (–1, –1, –1, –1, –1, –1, –1). The key 
signature for Css major is (2, 2, 2, 2, 2, 2, 2). The key signature for 
Cs12 major—moving each pitch class by exactly one octave—is 
(12, 12, 12, 12, 12, 12, 12). Since Table 1 contains a key signature 
assigning any pitch class in the basic scale to any letter name in the 
range A–G, we can use it to generate all the diatonic key signatures 
preserving the analogical relation between the aural and the visual. 

4.11 Suppose now we wish to find a key signature for T11 of the 
basic scale that minimizes accidental-use. We look for that row of 
Table 1 whose values, when added to 11, come closest to 0 modulo 
12Z. This is the second row of the matrix, representing the key 
signature for Bs major. Subtracting 1 from (2, 1, 2, 2, 1, 2, 2) gives 
us the familiar key signature for B major, (1, 0, 1, 1, 0, 1, 1).  

4.12 We can continue this process for the remaining diatonic 
collections. Table 2 shows fourteen of the fifteen standard key 
signatures. (The “trivial” zero-sharp, zero-flat C major key signature 
is omitted.) Each key signature in Table 2 adds or subtracts a constant 
value from the corresponding row of Table 1. Observe that every 
row of Table 1 gives rise to two key signatures, one involving 
sharps, the other flats. Adding the trivial key signature to this 
collection gives us the complete set of key signatures described in 
music fundamentals textbooks.  
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Table 2. The fourteen familiar key signatures 
 

 Sharp Key Signatures     Flat Key Signatures  
Cs maj 1 1 1 1 1 1 1 Cf maj -1 -1 -1 -1 -1 -1 -1 
B maj 1 0 1 1 0 1 1 Bf maj 0 -1 0 0 -1 0 0 
A maj 0 0 1 0 0 1 1 Af maj -1 -1 0 -1 -1 0 0 
G maj 0 0 0 0 0 1 0 Gf maj -1 -1 -1 -1 -1 0 -1 
Fs maj 1 0 1 1 1 1 1 F maj 0 -1 0 0 0 0 0 
E maj 0 0 1 1 0 1 1 Ef maj -1 -1 0 0 -1 0 0 
D maj 0 0 1 0 0 1 0 Df maj -1 -1 0 -1 -1 0 -1 

 
4.13 With the exception of the first row—which contains “redundant” 

key signatures enharmonically equivalent to B major and Df 
major—all of the key signatures in Table 2 minimize accidental-
use. Equivalently, the path-specific voice leadings shown in Table 
2, with the exception of those in the first row, are minimal 
according to the L1 (“smoothness”) norm. They are complete in the 
following sense: at least one of the minimal voice leadings 
between any pair of diatonic collections is contained by Table 2. 
We conclude, therefore, that our familiar set of key signatures does 
indeed solve the problem described at the beginning of Section IV. 

4.14 I will end this section by noting that the rows of Table 1 share 
a distinctive feature: each contains just two consecutive integers.49 
This is because the diatonic scale divides the chromatic scale into 
seven pieces as evenly as possible.50 In general, the more evenly a 
chord divides the octave, the more the rows of its scalar path 
matrix will converge on a constant value.51 Our investigation 
shows that this convergence will in turn endow the chord with 
special voice-leading properties: for if the values in a row of a 

                                                 
49 Consequently, none of the voice leadings shown in Table 2 involve 
paths longer than one semitone, and none of the standard diatonic key 
signatures uses double sharps or double flats. 
50 Clough and Douthett 1991. 
51 Indeed, the convergence of the values in the rows of the scalar path 
matrix can be taken to define “evenness.” This is precisely what Clough 
and Douthett (1991) does, in the special case of “maximal” evenness. Note 
that convergence is measured relative to some measure of voice-leading 
size. Clough and Douthett characterize “maximal evenness” by measuring 
convergence according to what mathematicians call the L∞ metric. 
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chord’s scalar path matrix are clustered around a single value, then 
there will exist a number t that, when added to these values, brings 
them all close to 0 modulo 12Z. As we have seen, this implies that 
there will be an efficient voice leading between that chord and its 
transposition by t semitones.52 Thus the unusual evenness of the 
diatonic collection manifests itself in the unusually efficient voice 
leadings between its transpositions; the efficiency of these voice 
leadings in turn manifests itself in the fact that diatonic key 
signatures use a very small number of accidentals.53  
 

V. Acoustic-scale key signatures 
 

5.1 I conclude by showing how these methods can be used to 
derive key signatures for the “acoustic” (or ascending melodic 
minor) scale. These key signatures will constitute a complete set of 
minimal bijective voice leadings between diatonic and acoustic 
collections. As before, our basic scale is (9, 11, 0, 2, 4, 5, 7). The 
chromatic scale is the familiar one. The “C acoustic scale,” (9, 10, 
0, 2, 4, 6, 7) or A–Bf–C–D–E–Fs–G, is known to the classical 
tradition as the ascending form of G melodic minor.54 

5.2 The acoustic-scale key signatures that preserve the analogical 
relation between the aural and visual correspond to crossing-free, 
bijective voice leadings between diatonic and acoustic collections. 
These voice leadings can be obtained from the rows of the 
interscalar path matrix shown in Table 3. 

 

                                                 
52 See above, §§4.6-4.8. Indeed it can be shown that if M is a maximally 
even chord and if N is any other chord of the same cardinality, then the 
minimal bijective voice leading between N and Tx(N) can be no smaller 
than the minimal bijective voice leading between M and Tx(M). A proof 
of this statement is a matter for another paper; I state the result here 
merely to pique readers’ curiosity. 
53 Interested readers are encouraged to explore this matter by constructing 
scalar path matrices for the whole tone scale, the harmonic minor scale, 
and the seven-note chromatic cluster. 
54 Traditionally, of course, the name “C acoustic scale” refers to the 
ordering C–D–E–Fs–G–A–Bf. Since we are disregarding pitch priority, 
we are free to rearrange the scale so that its scale-degree numbers 
correspond to its letter names. 

 
 



 
 
 

Music Theory Online 11.4 – 36 
 

Table 3. An interscalar path matrix    
from the basic scale to the acoustic scale    

 
0  steps 0 –1 0 0 0 1 0 
1  step 1 1 2 2 2 2 2 
2  steps 3 3 4 4 3 4 3 
3  steps 5 5 6 5 5 5 5 
4  steps 7 7 7 7 6 7 7 
5  steps 9 8 9 8 8 9 9 
6  steps 10 10 10 10 10 11 11

 
The basic scale is the familiar one; the target scale is (9, 10, 0, 2, 4, 
6, 7). Scale degrees in both collections are numbered starting with 
pitch class 9. As before, row i contains a path-specific voice 
leading sending scale degree j in the basic scale to scale degree j + 
i – 1 in the C acoustic collection. For example, the first row of 
Table 3 corresponds to the voice leading  
 

(9, 11, 0, 2, 4, 5, 7) + (0, –1, 0, 0, 0, 1, 0) ≡ (9, 10, 0, 2, 4, 6, 7) modulo 12Z 
 
which sends scale degree x in the basic scale to scale degree x in 
the acoustic collection. Similarly, the second row of Table 3 
corresponds to the voice leading  
 

(9, 11, 0, 2, 4, 5, 7) + (1, 1, 2, 2, 2, 2, 2) ≡ (10, 0, 2, 4, 6, 7, 9) modulo 12Z 
 
which sends scale degree x in the basic scale to scale degree x + 1 
in the acoustic collection. 

5.3 These voice leadings can be described as “interscalar trans-
positions.” To understand why, recall that scalar transposition 
(including its most familiar form, diatonic transposition), displaces 
every element in a scale by some constant number of scale steps. 
The voice leadings shown in Table 3 are similar, displacing each 
element of the basic scale by a constant number of scale steps, 
while changing the underlying scale in the process.55 Hence the 
name “interscalar transposition.” 

                                                 
55 This follows from the definition of the interscalar path matrix: row i of 
Table 3 sends scale degree j in the basic scale to scale degree j + (i – 1) 
in the acoustic scale. 
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5.4 We can also interpret the rows of Table 3 as key signatures. 
The first row corresponds to the key signature for the C acoustic 
scale, containing both Fs and Bf. The second row corresponds to 
to enharmonically equivalent key signature (1, 1, 2, 2, 2, 2, 2) or 
(As, Bs, Css, Dss, Ess, Fss, Gss). The remaining rows provide 
alternate key signatures for the scale {9, 10, 0, 2, 4, 6, 7}. 

5.5 The interscalar path matrix shown in Table 3 is again complete, 
allowing us to generate every crossing-free voice leading between 
the two collections. Equivalently, it allows us to generate all the 
acoustic-scale key signatures that preserve the analogical relationship 
between the aural and the visual. 

 
5.6 Comparing Table 3 to Table 1 reveals an interesting similarity: 

the rows of Table 3, with the exception of the first, reorder the 
corresponding rows of Table 1. For example, the second row of 
Table 1 is (2, 1, 2, 2, 1, 2, 2), while the second row of Table 3 is  
(1, 1, 2, 2, 2, 2, 2). Both rows contain five twos and two ones. 
Analogous statements can be made about rows 3–7. This means 
that in the familiar system the key signatures for the acoustic scale 
will closely resemble those for the diatonic scale. With the 
exception of the first row, they will use the same number and same 
type of accidentals as their diatonic counterparts. Figure 12 illustrates, 
comparing a few representative key signatures for diatonic and 
acoustic scales.  

 
Figure 12. Diatonic and acoustic-scale  

key signatures compared 
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Table 4. Thirteen acoustic-scale key signatures 

 
 Sharp Key Signatures  Flat Key Signatures  

C ac 0 -1 0 0 0 1 0 C ac 0 -1 0 0 0 1 0 
B ac 0 0 1 1 1 1 1 Bf ac -1 -1 0 0 0 0 0 
A ac 0 0 1 1 0 1 0 Af ac -1 -1 0 0 -1 0 -1 
G ac 0 0 1 0 0 0 0 Gf ac -1 -1 0 -1 -1 -1 -1 
Fs ac 1 1 0 1 1 1 1 F ac 0 0 -1 0 0 0 0 
E ac 1 0 1 0 0 1 1 Ef ac 0 -1 0 -1 -1 0 0 
D ac 0 0 0 0 0 1 1 Df ac -1 -1 -1 -1 -1 0 0 

 
 

5.7 Table 4 provides the full set of thirteen key signatures for the 
acoustic scale. In keeping with tradition, I reject those key 
signatures that apply two or more accidentals to a staff line—in 
other words, those containing double sharps, double flats, and so 
forth. Note that the key signature for the C acoustic scale appears 
on both the sharp side and the flat side, since it contains both a 
sharp and a flat. The thirteen key signatures shown in Table 4 
preserve the analogical relation between the aural and visual. 
Hence, their associated path-specific voice leadings are crossing- 
free. The key signatures in Table 4 also all minimize accidental-
use. Consequently, their associated voice leadings are minimal 
according to the L1 (“smoothness”) norm. Finally, the voice 
leadings form a complete set: Table 4 contains a minimal bijective 
voice leading from (9, 11, 0, 2, 4, 5, 7) to every acoustic scale. 
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5.8 Acoustic-scale key signatures, though rare, are not unknown. 
They appear in Rzewski’s Les Moutons de Panurge, Bartok’s 
Mikrokosmos, and elsewhere. The voice leadings associated with 
them are considerably more common, appearing throughout the 
literature—but particularly in the work of Debussy.56 Just as the 
acoustic-scale key signatures resemble the diatonic key signatures, 
so too do these voice leadings resemble the minimal voice leadings 
between diatonic collections. Just as there is a voice leading that 
relates two diatonic scales by moving a single pitch up by chromatic 
scale-step (F→Fs, relating C major to G major), so too is there a 
minimal voice leading relating a diatonic scale to an acoustic scale 
that moves a single pitch up by chromatic scale-step (C→Cs, relating 
C major to G acoustic). As Table 4 shows, there exists a voice 
leading between diatonic and acoustic collections that lowers one 
note by one semitone, one that raises two notes by semitone, one 
that lowers two notes by semitone, and so on.  

5.9 Notice again that each of the rows of Table 3 contains only two 
consecutive integers. This is because the acoustic scale, like the 
diatonic scale, divides the octave into seven nearly-even parts. The 
rows of an interscalar path matrix will all converge only to the extent 
that the matrix is constructed from two nearly even collections.57 

 
VI. Conclusion 

 
6.1  The preceding discussion has pursued several interrelated goals. 

Sections I and II provided a rigorous and systematic reconstruction 
of our familiar system of musical notation, thereby shedding new 
light on old theoretical concepts. We saw that we can name pitches 
and pitch classes without postulating a “chromatic scale” or quantizing 
pitch-class space into discrete units. We saw that familiar pitch-
class letter names can be associated with paths in pitch-class space, 
and that these paths represent an interesting alternative to traditional 
pitch-class intervals. We distinguished two different conceptions of 
voice leading, path-specific and path-neutral. Key signatures correspond 
to path-specific voice leadings, since they specify not only which 
pitch classes are to be related, but also how they are to be related. 

                                                 
56 See Tymoczko 1997, 2002, forthcoming. 
57 Interested readers can explore the matter by constructing interscalar path 
matrices linking the basic scale to a variety of septachords. 
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6.1  The rest of the paper used key signatures to illustrate aspects 
of the general theory of voice leading. Section III presented three 
virtues that voice leadings and key signatures can have: avoidance 
of voice crossings, preservation of common tones, and minimization of 
the size of the voice-leading. We saw that for a wide range of 
methods of measuring voice-leading size, it is always possible to 
avoid voice crossings while minimizing voice-leading size. However, 
it is not always possible to avoid voice crossings while preserving 
common tones.  

6.3  Section IV solved an interesting and important problem: how 
does one find a minimal bijective voice leading between arbitrary 
chords? We saw that this solution is implemented by our familiar 
system of diatonic key signatures. Section V applied the same method-
ology to another case, identifying a complete set of minimal voice 
leadings between diatonic and acoustic scales. These voice leadings 
are intimately related to minimal voice leadings between diatonic 
collections. As we saw, this resemblance is due to the fact that both 
collections divide the octave into seven nearly even pieces. 

6.4  Unfortunately, it is not possible here to explore further the 
general theory of voice leading. However, I hope to have provided 
some tantalizing hints about what such a theory looks like. With luck, 
a more thorough treatment of these matters will appear in print shortly. 
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APPENDIX 
Voice crossings and the triangle inequality 

 
A.1 This appendix describes the relation between voice crossings 

and the triangle inequality. It does not provide rigorous mathematical 
proofs, but rather offers an informal explanation of the connection 
between these two concepts. A more rigorous and comprehensive 
treatment is a matter for another paper. 

A.2 For simplicity, consider some path-specific voice leading between 
two pairs of pitch classes {a, b} and {c, d}. 

 
 (a, b) + (x1, x2) ≡ (c, d) modulo 12Z (A1) 

 
Ordered pairs of pitch classes can be represented as points on a 2-
torus.58 Equation A1 therefore determines a line segment on the 2-
torus. A measure of voice-leading size measures the length of this 
line segment. Since we are concerned with the smallest voice 
leading (shortest line segment) between {a, b} and {c, d}, we can 
assume that the path lengths |x1| and |x2| are less than or equal to 
half an octave.59  This in turn allows us to disregard the periodic 
structure of the torus, representing it as a portion of the plane R2. 

A.3 Suppose that Equation A1 has a voice crossing. The line 
segment joining (a, b) to (c, d) will therefore intersect the line x = 
y. Figure A1 illustrates.60 Point (p, p) is the point of the crossing. If 
the measure of voice-leading size is invariant under permutation of 
voices, the line segment (p, p)→(d, c) will have the same length as 
the line segment (p, p)→(c, d). The length of the straight path (a, 
b)→(p, p)→(c, d) will therefore be the same as the length of the 
“kinked” path (a, b)→(p, p)→(d, c). If the measure of voice-
leading size obeys the triangle inequality, then there is a direct path 
from (a, b) to (d, c) that is no longer than the kinked path  
(a, b)→(p, p)→(d, c). Therefore we can find a voice leading 

                                                 
58 An n-torus is a figure whose n dimensions are all circles. Thus a 2-torus 
has two circular dimensions; it can be represented in Euclidean space as 
the surface of a donut. 
59 This assumption is valid only when our method of voice-leading size is 
nondecreasing in each of its individual path lengths. In other words, one 
cannot make a voice leading smaller simply by lengthening one of its paths. 
60 In drawing the figure we have placed (a, b) “above” the line and (b, c) 
“below” it. Nothing in the argument rests on this, however. 
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mapping a to d and b to c, no larger than the voice leading shown in 
Equation A1, and not crossing the line x = y. 
 

Figure A1. Pitch-class space, represented as a portion of the plane 
 

          
 

A.4 The above argument generalizes straightforwardly to higher-
dimensional voice leadings involving more than two voices: we 
remove voice crossings between pairs of voices by considering the 
two-dimensional subspaces involving these two voices alone. This 
procedure never introduces additional crossings into the voice 
leading; hence we can always reduce the number of crossings to 
zero without increasing the voice leading’s size. Furthermore, this 
procedure does not change the number of “voices” in the voice 
leading, modeled here as the dimension of the space. Finally, note 
that since the argument does not utilize the circular features of 
pitch-class space, it can be applied to pitch space as well. 

A.5 We conclude that, for many measures of voice-leading size, it 
is always possible to find a minimal bijective voice leading between 
arbitrary multisets that is crossing-free. The result holds in both 
pitch and pitch-class space, and requires only that our measure be 
nondecreasing in each of its path lengths, invariant under permutation 
of voices, and consistent with the triangle inequality. These conditions 
are so basic that it is tempting to take them to characterize every 
“reasonable” measure of voice-leading size. 
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