
 

Introduction

[1] This report presents a graphing method designed to aid the study of rhythm and expressive timing in beat-based music. (1)

I  show how the  polar  coordinate  system can be  used  to  describe  and analyze  different  features  of  expressive  timing.
Numerous studies have shown that expressive timing lies at the core of rhythm production. The evidence—reviewed by
Clarke 1999—confirms that musicians often place attack points along a continuum of beat subdivision values rather than on
the  predetermined slots  afforded  by  metrical  grid  spacing,  thus  imbuing  the  performance  with  expressive  depth.  This
departure from a clear-cut temporal lattice is inadequately, if at all, represented by standard music notation. Like the “piano
roll” representation used by MIDI sequencers, standard music notation is a kind of visualization tool whose two “axes”
capture two paramount features of music: time horizontally and pitch vertically. The need to represent specific aspects of
music in a detailed way has led to the design of various visualization methods, as I discuss next.

Visualization and Circles

[2] Certain properties of musical structure can be depicted using rhythmograms (Todd 1994), self-similarity squares (Foote
and  Cooper  2001),  or  hierarchic  trees  (Lerdahl  and  Jackendoff  1983).  Timbre  can  be  viewed  with  various  forms  of
spectrograms, hemiolas with ski-hill graphs (Cohn, 2001), harmony with quotient topologies (Tymoczko 2006), and the pitch
chroma cycle with helices (Shepard 1983). Geometrical thinking has also served the composition process, as evidenced by
the hand-drawn schematics of Reynolds (2004) and Wishart (1996), to name just two recent examples.

[3] Visualizations also play a role in the realm of rhythm and expressive timing. Even though microtiming information is
sometimes displayed with numerical tables, visualization strategies are often used to communicate information on a more
perceptually intuitive level. Desain & Honing (2003) devised a triangular chronotopic map that plots the temporal nuances
and categorical boundaries of three-note rhythms. An important and appealing feature of their graphing method is that every
point in the map represents a unique rhythmic pattern. Dots that are near each other in the graph denote similar sounding
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ABSTRACT: Seeing how music is organized can help us understand how it is heard. Musical rhythm usually operates within
a recursive temporal framework such as a (periodic) beat or a (metered) measure. Therefore it makes sense to visualize
tactus-based rhythm as a cyclical concept. This can be done using a graph that uses polar coordinates to plot temporal
information.  The beat  is  represented by a  circle,  with all  possible time-points  within the beat  placed along the circle’s
circumference. Radius length denotes interonset interval, with longer notes lying farther from the center of the circle. The
circular plot is well suited for visualizing and analyzing expressive timing data. It can also be used to re-interpret complex
rhythms, partition tempo curves, and summarize rhythmic profiles.
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rhythms, forming “clumps” that represent distinct perceptual categories. However, the map is restricted to rhythms that
consist of three durations only and is therefore of limited use in most real-world musical contexts. For longer rhythms,
note-for-note expressive timing data are often visualized with an XY graph where evenly partitioned time units (such as
notes or measures) demarcate score position along the abscissa; the ordinate usually plots tempo, interonset interval,  or
deviation from a metronomic subdivision. This type of design has proved helpful in different musical contexts including jazz
(e.g., Benadon 2006; G. L. Collier and J. L. Collier 2002) and Western “classical” music (e.g., Friberg and Sundberg 1999;
Palmer 1996; Repp 2002), but its linear left-to-right orientation tends to conceal the recursive nature of beat-based patterns.

[4]  Circles  enjoy  a  privileged  status  in  the  visualization  of  musical  time.  They  have  been  tapped  by  music  theorists,
ethnomusicologists, and computer scientists to represent cyclical aspects of rhythm. London (2004, p. 64) visualizes meter by
placing “peaks of attentional energy” (beats and subdivisions) along a circle’s circumference. Time also flows around a circle
in Becker’s (1980, p. 107) representation of Javanese gamelan gongan (structural units of time marked by a gong), which are
“cyclical rather than linear,” and in Anku’s (2000) representation of African rhythms. Locke (1996, p. 90) and Collins (2004,
p. 59) also use circles to characterize African rhythms, taking the circular concept one step further by employing concentric
circles that describe the stratification of polyrhythm. In the work of Toussaint (2005) and McLachlan (2000),  the  circle
facilitates mathematical explanations of rhythm such as maximal evenness and similarity measures.

[5]  Hence,  we  find  two  parallel  practices:  (1)  the  graphical  representation  of  expressive  timing  and  (2)  the  circular
representation of rhythm and time. This paper seeks to combine them.

The Circle Graph

[6] The graphing method I propose uses polar coordinates to plot interonset interval and onset placement within the beat.
Polar coordinates consist of two variables, r  and θ.  The angular coordinate θ  is the counterclockwise angle measured in
radians. Here, θ represents normalized onset placement within the beat according to the formula

 θ = (2πt/b) + (π/2) (1)

where t is the time of the note’s onset measured from the beat’s beginning and b is the total beat length. Normally, the angle’s
zero-point lies on the Cartesian positive x-axis (on a horizontal line to the right of the origin), but here the beat’s beginning
time-point, or downbeat, lies on the positive y-axis. (I use the term downbeat to refer to the beginning of the beat (t = 0); it
should not be confused with the term’s more common usage as the first beat in a measure.) In this way, the downbeat lies at
the top of the circle, or θ = π/2. (2) As time flows through the beat (as t increases from 0 to b), we move counterclockwise
around the circle from the beginning of the beat t = 0 (the downbeat at θ = π/2), through its midway point t = b/2 (the
upbeat at θ = 3π/2), and back up to the next downbeat.

[7] The radial coordinate r  denotes distance from the pole (the graph’s central point, or origin). In this graph, r  equals
interonset interval. Since longer notes have longer radii than shorter notes, concentric circles can be traced to provide a
visual  reference for  different  note  durations.  For instance,  if  b  = 600 ms (equivalent  to a  tempo of  100 bpm given a
quarter-note beat), then the sixteenth-note equals 150 ms (b/4); all points inside/outside the circle whose r = 150 denote
values shorter/longer than the sixteenth-note. Animations 1 and 2 illustrate the graph’s basic mechanism.

[8] Figure 1a shows the tripletizing inflection discussed by Iyer (2002), in which a syncopated rhythm based on eighth- and
sixteenth-notes is “spread” in order to accommodate a triplet-based grid. (3) Note value categories are shown as concentric
circles. (4) The first (bracketed) pattern shows the quantized rhythmic template. As actually performed here, however, the
durations  are  evened  out  through  “spreading,”  first  mildly  (first  beat),  then  enough  to  transform the  pattern  into  an
isochronous triplet (second beat). The reverse type of microrhythmic morphing can be seen in Figure 1b, where the ternary
long-short inflection is evened out to become a pair of even eighth-notes. On the second beat of the measure, the pattern
closely  resembles  a  triplet.  The  following  two  beats  see  a  drive  towards  isochrony,  such  that  the  ternary  long-short
configuration is fully evened out by the beginning of the next measure. The diagonal gridline marks the beat’s two-thirds
division—that  is,  where  the  eighth-note  triplet  (as  shown  in  the  transcription)  would  be  aligned  given  a  deadpan
performance. Note that, unless marked with different point-shapes such as squares and triangles, the graph says nothing
about which beat in the measure the notes belong to. It merely tracks cumulative onsets within the recursive tactus cycle.
Neither does it presuppose a subdivision metric.  Quite the opposite:  all  possible time-points in the beat are fair  game;
gridlines can be added after the fact to reveal any underlying metrical frameworks.

Analytical Contexts

[9] As shown, the circle graph can shed light on details of expressive timing. It can also prove useful in the analysis of
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rhythmically  complex  passages,  such  as  the  one  shown in  Figure  2a.  The  gridlines  suggest  that  this  rhythm may  be
organized according to a quintuplet grid. But, as the transcription shows, notating the rhythm accurately requires that we use
a more complicated subdivision ratio (19:16) if the last note is to line up correctly with the downbeat of the next measure. Is
there a grid that provides an alternative fit? Figure 2b suggests so. Even though the rhythm appears complex in its original
tempo of 97 bpm, it can be rethought as a straightforward triplet pattern at 80 bpm—a tempo that may have momentarily
supplanted the other one in the improviser’s mind. As Animation 3 shows, the ability to visually re-construe a given set of
durations according to different clock speeds may constitute this graphing method’s biggest strength.

[10] Another potential purpose of the circle graph is to dissect nonperiodic rhythms that undergo a systematic retardation or
acceleration. An example of such a rhythm appears in Figure 3. The transcription shows how each beat’s subdivision grid
becomes successively finer as the notes get faster (6 to 8 to 10 subdivisions per beat; Figure 3a). Another way of interpreting
the phrase is as a sixteenth-note grid that gradually contracts, as the alternate transcription shows (Figure 3b / Animation 4).
In order to determine the precise nature of this tempo curve, we split the phrase into one-beat chunks (with one exception
on the third beat) and, with the graph’s help, assign each segment a local tempo that provides a good visual fit. This graph is
in fact a composite of six different superimposed graphs, each with its own tempo and set of coordinates according to
formula (1).

[11] We need not restrict the circle graph to brief passages. Because the graph is essentially a round histogram, it can be used
to provide a snapshot of overall rhythmic characteristics. Huron (2006, p. 178) did this with columned histograms to display
onset frequency of occurrence for meter and hypermeter. Similarly, we can allow the circle graph to collapse rhythmic activity
over longer time spans, as in the two 8-measure passages shown in Figure 4. Both are duets that feature an improvised
string-instrument solo accompanied by a steady congas accompaniment (which is not graphed). At first sight, the graphs
resemble an inexperienced marksperson’s target. But a moment’s reflection reveals rhythmic properties particular to each
performance. Nelson González’s solo is heavily syncopated: his eighth-notes are almost always displaced (they fall on the
second and fourth sixteenth-note “slots”), he rarely plays on the downbeat, and his use of successive dotted eighth-notes
result in hemiolas (Figure 4a). By contrast, Jaco Pastorius uses sequences of sixteenth-notes to place equal stress on all four
subdivisions (Figure 4b); there are indeed some syncopated eighth-notes but they are much less prominent than in the other
solo. Pastorius’ rhythmic urgency is of a different kind: he encloses the bull’s-eye with rapid (sub-100 ms) sixteenth-note
triplets, whereas the sixteenth-note accounts for González’s fastest value.

[12] That these observations may be gleaned from a standard transcription is immaterial. Of note is the graph’s capacity to
display various aspects of timing concisely and simultaneously. In addition, the circle graph can be used to view, in the form
of geometric rotation, temporal displacement of a rhythmic figure. For instance, a rhythm that is delayed or anticipated by a
sixteenth-note  results  in  a  positive  or  negative  90-degree  rotation.  If  the  displacement  is  microrhythmic  rather  than
metronomic, the shape will appear slightly rotated and mildly distorted.

[13] Finally, a word on some of the graph’s limitations. While useful in diverse contexts, this method’s reliance on a pattern of
recurring and isochronous beats makes it an impractical choice for visualizing music that does not conform to this type of
rhythmic organization.  Even if  a  steady beat  is  present,  it  is  not  always easy or  possible  to determine its  exact  onset.
Furthermore,  the circle graph can neither relate expressive timing patterns to larger musical  structures  nor portray the
detailed time course of a performance—these phenomena are best illustrated linearly.

Summary

[14] I have shown how the circle graph can serve diverse analytical functions. Its design facilitates understanding of beat
subdivision details by making them apparent to the naked eye. Alternate tempos, either stable or fluctuating, can be sought
visually to accommodate otherwise intractable rhythms. Lastly, the distribution pattern of points can summarize structural
traits exhibited by different rhythmic patterns of any length from a few notes to a multi-measure performance.
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Footnotes

1. I am grateful to Charles J. Limb, Bruno Repp and Henkjan Honing for their feedback on an earlier draft of this article.
Return to text
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2. The “top” of the beat lies at the top of the circle. There are two logical alternatives to this configuration. The downbeat
could lie at θ = 0 (equating the beginning of the beat with the beginning of the arc) or at θ = –π/2 (such that the downbeat
lies at the bottom of the circle and the upbeat at the top).
Return to text

3.  The  performance  measurements  used  in  the  examples  were  made  by  the  author  with  the  sound  editor  Peak  4.
Measurement errors are estimated to lie between ~5 and ~10 ms. All examples are drawn from improvised music. When
music notation appears below a graph, it is a transcription and not a score.
Return to text

4. These are provided for visual reference only and have no bearing on the coordinate placement of points.
Return to text
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