Maximally Alpha-Like Operations

Guy Capuzzo

KEYWORDS: Maximally alpha-like operations, alpha, Z-relation, Z-pair, M-relation, TTOs, mappings, pcsets, transformational network

ABSTRACT: Any two Z-related set-classes will map onto one another under 1) $T_n \cdot M$ or $T_n \cdot MI$, or 2) $T_n \cdot M$ or $T_n \cdot MI$ in tandem with Morris’s alpha operations, or 3) maximally alpha-like operations, the original contribution of the present paper. This brief “research notes” paper explores the theoretical formulation and analytical application of maximally alpha-like operations.

Received May 2008

[1] Example 1 shows an excerpt from a Dallapiccola song. The excerpt contains four chords, labeled X, Y, $T_6(Y)$, and $T_6(X)$. The union of X and Y forms the pc aggregate, as does the union of $T_6(Y)$ and $T_6(X)$. The passage resists an overarching transformational network such as that at the bottom of Example 1 because there is no T_n, $T_n \cdot I$, $T_n \cdot M$, or $T_n \cdot MI$ operation that will map the X and Y forms onto each other. The dashed arrows in the network represent this limitation.

[2] The reason why X and Y cannot map onto one another is that they are Z-related. However, not all Z-pairs (two Z-related scs) work this way. To explain, I shall divide the twenty-three Z-pairs (under the traditional equivalence operations T_n and $T_n \cdot I$) into three categories. Example 2 shows the first category, Z-related/M-related. Here each sc maps under $T_n \cdot M$ or $T_n \cdot MI$ onto the other sc in the same Z-pair; the two scs are thus Z-related and M-related. Example 3 shows the second category, Z-related/M-variant. Here each sc maps under $T_n \cdot M$ or $T_n \cdot MI$ onto a sc in a different Z-pair (thus the term “variant”). Example 4 shows the third category, Z-related/M-invariant. Here each sc in the Z-pair maps onto itself under $T_n \cdot M$ or $T_n \cdot MI$ (thus the term “invariant”). This is perhaps the most restrictive of the three categories, in that each sc can only map onto itself. The Z-pair in Example 1, 6–Z.28/6–Z.49, belongs to this category.

[3] Robert Morris has noted that the Z-relation may appear or disappear depending on the canon of operations in use. This is evident in Example 2, where scs in Z-pairs that do not relate by T_n or $T_n \cdot I$ do relate by $T_n \cdot M$ or $T_n \cdot MI$. To this end, Morris develops a number of operations designed to erase the Z-relation. The most often cited of these operations is alpha (α), whose mappings are

$$\alpha 1 = (01) (23) (45) (67) (89) (AB)$$

or

$$\alpha 2 = (12) (34) (56) (78) (9A) (B0).$$
For $\alpha 1$, Ian Quinn notes, “each pc in the even whole-tone collection gets transposed up a semitone, and each pc in the odd whole-tone collection down a semitone.”(7) For $\alpha 2$, each pc in the even whole-tone collection is transposed down a semitone, and each pc in the odd whole-tone collection is transposed up a semitone. Applying $\alpha 1$ to a pcset X may yield quite different results than applying $\alpha 2$ to X. For instance, if $X = \{012478\}$, a member of $6\text{-}Z17[012478]$, applying $\alpha 1$ to X yields $\{013569\}$, a member of sc $6\text{--}Z28[013569]$. However, applying $\alpha 2$ to X yields $\{12378B\}$, another member of $6\text{--}Z17$. The fact that $6\text{--}Z17$ and $6\text{--}Z28$ belong to the same category of Z-pairs (cf. Example 4) suggests that α may be of use in creating mappings for the Z-pairs in Examples 3 and 4.

[4] To test this hypothesis, Example 5 applies α to the scs in Example 3. The result is clear: α maps (the pcsets of) four of the eight Z-pairs onto their Z-partners, thus erasing the Z-relation for these scs ($6\text{--}Z3/6\text{--}Z36$, $6\text{--}Z25/6\text{--}Z47$, $6\text{--}Z13/6\text{--}Z42$, $6\text{--}Z50/6\text{--}Z29$). The four Z-pairs at the bottom of Example 5 do not map onto their Z-partners under α ($6\text{--}Z4/6\text{--}Z37$, $6\text{--}Z26/6\text{--}Z48$, $6\text{--}Z24/6\text{--}Z46$, $6\text{--}Z39/6\text{--}Z10$). In like fashion, Example 6 applies α to the scs in Example 4. On the one hand, α resolves the Z-relations between $5\text{--}Z12/5\text{--}Z36$, and between their abstract complements, $7\text{--}Z12/7\text{--}Z36$. On the other hand, α turns the Z-related/M-invariant hexachords into a new set of Z-related/M-invariant hexachords (the set is new because the variances differ from those in Examples 3 and 5). The upshot is that the Z-related/M-invariant hexachords are still unable to map onto their Z-partners.

[5] The success of α in resolving every Z-relation save for four Z-pairs in Example 5 and four Z-pairs in Example 6 prompts me to create maximally α-like operations for those Z-pairs. By “maximally α-like,” I am imagining operations whose cycles contain as many interval-class 1s (ic 1s) as possible, since the cycles of α consist of six ic 1s. The ic 1 cycles result in a “small” voice-leading distance between two α-related hexachords—no more than six ics of “work” are required to “move between” them. As a result, maximally α-like operations will come as close as possible to six ics of work in relating hexachords. Ideally, a maximally α-like operation will contain 5 ic 1s, but we shall see that certain cases permit only 4 or even 3 ic 1s. The following sections explore maximally α-like operations in detail.

[6] Let us return to Example 1. There, $X = \{02458B\}$ and $Y = \{13679A\}$. The maximally α-like operation

$$28 \leftrightarrow 49.1 = (01) (23) (47) (56) (89) (AB)$$

maps X onto Y and vice versa. The label “$28 \leftrightarrow 49.1$” indicates that this operation maps the $6\text{--}Z28$ member X onto the $6\text{--}Z49$ member Y and vice versa. “1” indicates that this is the first of two operations that will map X onto Y and vice versa. $28 \leftrightarrow 49.1$ is maximally α-like because its cycles contain five ic 1s—(01), (23), (56), (89), (AB)—and one ic 3—(47). Underlines indicate the non-ic 1 cycles.

[7] Example 7 lists a second maximally α-like operation

$$28 \leftrightarrow 49.2 = (09) (12) (34) (56) (78) (AB)$$

that also maps X onto Y and vice versa. $28 \leftrightarrow 49.2$ also contains five ic 1s—(12), (34), (56), (78), (AB)—and one ic 3—(09)—and is thus as α-like as $28 \leftrightarrow 49.1$. In the abstract, the choice between $28 \leftrightarrow 49.1$ and $28 \leftrightarrow 49.2$ is essentially arbitrary, but in a specific musical context, factors such as instrumentation, register, and voicing may suggest one operation over another.

[8] Example 8 renotes the transformational network of Example 1, using $28 \leftrightarrow 49$. Because the registral spacing of the piano chords does not correspond to either of the $28 \leftrightarrow 49$ operations, I use the generic label $28 \leftrightarrow 49$ as opposed to the more specific $28 \leftrightarrow 49.1$ or 49.2. The $28 \leftrightarrow 49$ operation allows us to assert the relations that were not possible in Example 1’s network. By reading the network clockwise beginning from X, we follow the chronological procession of the hexachords in Example 1, $<X, Y, T_0Y, T_0T_6X>$, and their respective transformations $<28 \leftrightarrow 49, T_0, T_6, 28 \leftrightarrow 49 T_0 >$.

[9] A contextual factor in the definition of maximally α-like operations involves the two pcsets that will map onto one another. Up to this point, the $28 \leftrightarrow 49$ operations have mapped $X = \{02458B\}$ onto its literal complement, $Y = \{13679A\}$. However, to map X onto T_1 of $Y = \{2478AB\}$, for example, it will not be possible to define a maximally α-like operation (1-to-1 and onto) since X and T_1 of Y share common tones. A simple workaround involves retaining the already-defined $28 \leftrightarrow 49$ operations, then transposing or inverting the resulting pcset. Because maximally α-like operations do not commute with T_n or $T_n I$, the initial choice of orthography must be adhered to. Throughout this paper, I use right-to-left orthography. For example, the compound operation $T_1 28 \leftrightarrow 49$ maps X onto T_1 of Y first through the application of $28 \leftrightarrow 49$ to X (which maps X onto Y), and second through the application of T_1 to Y.
[10] Having defined maximally α-like operations for 6–Z28/6–Z49, I now proceed to the Z-pair 6–Z17/6–Z43. **Example 9** grounds the discussion with a passage from Carter's *Retrouvailles*. Like the Dallapiccola excerpt in Example 1, *Retrouvailles* features an opening chord X with its literal complement Y, followed by transformations of X and Y that form a second aggregate. Here $X = \{03489A\}$ and $Y = \{12567B\}$, and the lone maximally α-like operation that maps X onto Y (and vice versa) is

$$17 \leftrightarrow 43 = (01) (23) (45) (69) (78) (AB) (5, 1c 3)$$

This operation permits the transformational network at the bottom of Example 9, which strongly recalls the network in Example 8. By reading the Example 9 network clockwise beginning from X, we follow the chronological procession of the hexachords, $<X, Y, T_3(X), T_3(Y)>$.

[11] I now define the single maximally α-like operation for the Z-pair 6–Z12/6–Z41. **Example 10** provides a musical context for the discussion, reproducing a passage that Allen Forte discusses in detail. Forte observes two transformational relations among the chords in Example 10: first, that chord 3 is T_9 of chord 1, and second, that chord 3 is $T_{51}I$ of the literal complement of chord 2. The following operation formalizes Forte's second observation:

$$12 \leftrightarrow 41 = (03) (12) (45) (67) (8B) (9A) (4, 1c 1s, 2c 3s).$$

Chord 2 is the 6–Z41 member $\{04567A\}$ and chord 3 is the 6–Z12 member $\{012567\}$. $12 \leftrightarrow 41$ maps $\{012567\}$ onto its literal complement $\{0157AB\}$ and vice versa. The arrows at the bottom of Example 10 indicate the T_9 relation from chord 1 to chord 3, and the $T_{51}I/12 \leftrightarrow 41$ relations between chords 2 and 3. **Example 11** grounds the discussion of the final pair of Z-related/M-invariant hexachords, 6–Z23/6–Z45, with a second passage discussed by Forte. The passage contains an opening chord $X = \{02359B\}$ followed by T_9 of X's literal complement, $\{03689A\}$. Because the chords share pcs, a 1-to-1 operation from one to the other is not possible. For this reason, I shall list the two maximally α-like operations that map $X = \{02359B\}$ onto its literal complement $\{14678A\}$:

$$23 \leftrightarrow 45.1 = (07) (12) (34) (56) (89) (AB) (5, 1c 1s, 1c 5)$$

and

$$23 \leftrightarrow 45.2 = (01) (27) (34) (56) (89) (AB) (5, 1c 1s, 1c 5).$$

Example 12 lists maximally α-like operations for the remaining hexachords in Example 5.

[13] In this brief “research notes” paper, I have explored ways of mapping any Z sc onto its Z partner. For Z-related/M-related scs (Example 2), this is accomplished by T_nM or T_nMI. For four of the eight Z-related/M-variant Z-pairs (Examples 3 and 5) and two of the six Z-related/M-invariant Z-pairs (Examples 4 and 6), this is accomplished by a combination of α, T_nM, and/or T_nMI. Finally, for the remaining Z-related/M-variant hexachords (Example 5) and Z-related/M-invariant hexachords (Example 6), this is accomplished by the primary contribution of this paper, maximally α-like operations.

[14] There exist a number of avenues for future work with maximally α-like operations. I begin with spaces other than pc-space. First, maximally α-like operations can be defined for pitches in pitch-space, or beats in beat-class (bc) space. Bc-space is particularly fertile ground for the development of new operations since, to date, theorists have defined bcsets primarily in terms of T_n and T_nI. **Example 13** illustrates one such application, modeled on the 28 \leftrightarrow 49 operation (cf. §6 and Examples 7–8). The snare drum projects two mod-12 bc aggregates. First, $X = \{02458B\}$ precedes its 28 \leftrightarrow 49 transformation, $Y = \{13679A\}$. Second, T_6 of $Y = \{790134\}$ precedes T_6 of $X = \{68AB25\}$. The network in Example 13 is isographic with that in Example 8, and the passage in Example 13 is isographic in bc-space to the passage in Example 1 in pc-space.

[15] Returning to traditional pc-space, maximally α-like operations bear a number of similarities to models of fuzzy T_n and T_nI. For the latter models, the benchmarks are the traditional “crisp” T_n and T_nI operations, and offset (“degrees of divergence”) is measured from those cycles. In like fashion, maximally α-like operations measure offset from α by specifying the number and “size” of non-ic 1 ics. **Appendix: Definitions**
DEF 1: Z-relation: Two pcsets or scs are Z-related if they share an ic vector but do not relate by T_n and/or T_I. The standard gauge of T_n/T_I equivalence is assumed.

DEF 2: Z-pair: Two Z-related pcsets or scs (“Z-partners”).

DEF 3: The two scs in a Z-pair are one of the following:
- Z-related/M-related (M maps each sc in the Z-pair onto the other sc in the same Z-pair);
- Z-related/M-variant (M maps each sc in the Z-pair onto a sc in a different Z-pair);
- Z-related/M-invariant (M maps each sc in the Z-pair onto itself).

DEF 4: An operation is a mapping that is 1-to-1 and onto.

DEF 5: Alpha (α) is an operation whose cycles are $\alpha_1 = (01) (23) (45) (67) (89) (AB)$ or $\alpha_2 = (B0) (12) (34) (56) (78) (9A)$ (Morris 1982).

DEF 6: A maximally a-like operation is an operation whose cycles mimic those of α as closely as possible by containing the maximal number of ic 1 cycles. An example is $(01) (23) (47\underline{56})(89\underline{AB})$. Underlines indicate non-ic 1 cycles.

Guy Capuzzo
UNC at Greensboro School of Music
P.O. Box 26170
Greensboro, NC 27402-6170
g_capuzz@uncg.edu

Works Cited

Footnotes

1. Buchler 2000, 52–3 discusses the chords in Example 1 in connection with interval cycles.

2. They are also ZC-related (Morris 1982, 103), but the ZC-relation is not required for the present paper's agenda.

3. The status of TnM and TnMI as equivalence operators on par with Tn and TnI is controversial since TnM or TnMI exchanges ic 1 and ic 5 content (Winham 1970, 281–2, Morris 1987, 148, Morris 2001, 52). This can lead to drastically different “equivalent” pcsets, such as {012345} and {024579} (chromatic to diatonic). In the present paper, however, the sets under discussion are Z-pairs, whose ic vectors are identical, thereby rendering this criticism moot. Winham 1970, 282, defends TnM and TnMI, stating, “it would not even be correct to say without qualification that I is a ‘closer’ relation than M5 or M7. For while M5 preserves the intervals 3 and 9 while complementing 2, 4, 8, and 10, and M7 does the opposite, I complements all of these and preserves none; so in that one sense I is the least ‘close.’” Nonetheless, while TnM and TnMI do not change the ic content of a Z-pair, they do change the larger subsets embedded in each sc.

8. Morris 1982 develops operations other than α that change the mappings among Z-partners, but notes that the only way to address 6–Z17/6–Z43 and 6–Z28/6–Z49 is to create a system of equivalence in which the fifty Tn/TnI hexachordal scs collapse into three scs (129–31). This system is not in widespread use.

11. No maximally α-like operation whose cycles contain five ic 1s exists for 12 ↔ 41.

15. Thanks to Jonathan Salter for writing a computer program to calculate maximally α-like operations, Igor Erovenko (Department of Mathematics and Statistics, UNCG) for help with matters mathematical, and Clifton Callender, J. Daniel Jenkins, Evan Jones, Rachel Mitchell, Robert Morris, Robert Peck, Jonathan Pieslak, Adam Ricci, Caleb Smith, and the anonymous *MTO* readers for their suggestions.

Copyright Statement

Copyright © 2008 by the Society for Music Theory. All rights reserved.

[1] Copyrights for individual items published in *Music Theory Online (MTO)* are held by their authors. Items appearing in *MTO* may be saved and stored in electronic or paper form, and may be shared among individuals for purposes of scholarly research or discussion, but may not be republished in any form, electronic or print, without prior, written permission from the author(s), and advance notification of the editors of *MTO*.

[2] Any redistributed form of items published in *MTO* must include the following information in a form appropriate to the medium in which the items are to appear:

This item appeared in *Music Theory Online* in [VOLUME #, ISSUE #] on [DAY/MONTH/YEAR]. It was authored by [FULL NAME, EMAIL ADDRESS], with whose written permission it is reprinted here.

[3] Libraries may archive issues of *MTO* in electronic or paper form for public access so long as each issue is stored in its entirety, and no access fee is charged. Exceptions to these requirements must be approved in writing by the editors of *MTO*, who will act in accordance with the decisions of the Society for Music Theory.

This document and all portions thereof are protected by U.S. and international copyright laws. Material contained herein may be copied and/or distributed for research purposes only.

Prepared by Sean Atkinson, Cara Stroud, and Tahirih Motazedian, Editorial Assistants and Brent Yorgason, Managing Editor