
 

Introduction

0.1 Lehman’s hypothesis

[0.1.1] In two papers published in 2005 (2005a, 2005b), Bradley Lehman introduced the view that the recipe for the long-lost
temperament of Johann Sebastian Bach had in fact been lying for all to see—not unlike Poe’s Purloined Letter—as a scribbling
on the front page of the autograph edition of Das Wohltemperirte Clavier, the “Well-Tempered Clavier” (henceforth abbreviated
as the WTC). As Lehman’s own learned comparisons with many previously known tunings make clear, this is a vexed question,
and his “discovery” aroused a number of refutations, on various grounds.

[0.1.2] Lehman’s homepage, with abundant discussions and links, is accessible by clicking here. Here is a short summary of his
interpretation of picture 1. Let us recall the gist of the problem of tuning. Twelve just fifths (frequency ratio 3/2) amount to
seven octaves plus a Pythagorean comma. Using eleven just fifths leaves a “wolf,” e.g. one ugly fifth, and all tonalities featuring
this fifth will sound wrong. The abstract solution is equal temperament, wherein all fifths are reduced by one twelfth of a
comma, but then all intervals are out of tune, and all scales sound (equally) disharmonious. The problem of tuning thus
consists of adjusting the different fifth sizes, aiming at a temperament wherein all tonalities sound well. This is exactly the
meaning of “Wohl Temperirte” as Bach explains it on the first page of the WTC. According to Lehman, the picture before the
text (see Figure 1) gives the directions for such a temperament.

[0.1.3] First the picture must be turned over (flipped upside-down); now consider all those loops as directives on how to tune
successive fifths, beginning with F-C. The small inner loops represent nudges, slight moves of the tuning-pin. (1) There are
either 2, 0 or 1 nudges. The total is 13 nudges (=2+2+2+2+2+0+0+0+1+1+1), suggesting that each nudge should be one
thirteenth of the Pythagorean comma(2) in order to get around the circle of fifths smoothly. Eventually, the circle of fifths
begins with five short fifths (like numerous generalized meantone temperaments), carries on with three pure fifths and ends
with intermediate-size fifths. It is fairly simple to realize in practice, in accordance with the well-known fact (or legend) that
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Bach tuned a harpsichord in a quarter of an hour. Lehman made a movie showing the tuning of an octave on YouTube,
accessible here. The three different sizes of fifths are hard to distinguish when played alone; Lehman’s videos are much more
explicative.

0.2. Why it is unprovable . . .

[0.2.1] The unsolvable problem of tuning has been well understood since Ptolemaios at least: twelve just fifths are slightly in
excess of seven octaves, (3⁄2)12 ≈ 129.75 > 27 = 128, and more generally, there is no way any number of fifths can equal some
number of octaves, as the equation (3⁄2)n = 2p admits no solutions in integers n, p  > 0. Fiddling with the sizes of fifths
introduces problems with other “pure” intervals, like the major third, which should ideally be close to 5/4.

[0.2.2] There can be no ideal solution, since a number of different desirable properties compete with one another. Hence the
musicological debate on the quality of Lehman’s temperament (henceforth called LT) might go on for ever, as proponents of
any other temperament will put forward (usually in good faith) diverse qualities, (3) often sporting personal preferences instead
of facts (see for instance the acerbic [Lindley and Ortgies 2006] and its refutation by Lehman).

0.3 . . . or is it ?

[0.3.1] We need some objective quality to assess a temperament, preferably addressing the whole  collection of major (and
minor) scales—as Bach did, allowing arbitrary modulation in the composition, e.g. tuning the harpsichord once and for all
before playing through the 24 tonalities in the WTC.

[0.3.2] The present paper puts forward a geometric quality of temperaments, measured with a single number (the Musical
Sameness of Scales, or MSS); as it happens, the comparison of values of MSS for the different tunings in competition so far
singles out LT as a clear winner, primus inter pares.

[0.3.3] This MSS makes use of the Discrete Fourier Transform (DFT), a mathematical tool whose relevance to major scales
was discovered very recently (Quinn 2004; Amiot 2007). Despite its technicality, the MSS puts forward a musical quality that
Bach would have found desirable.

[0.3.4] Its discovery was serendipitous, and has nothing to do with Bach and the WTC. I was investigating the DFT of major
scales for purely theoretical reasons, but endeavored to try it on unequal temperaments as an illustration for the Helmholtz
“Klang und Ton” workshop in Berlin (May 2007). I came across Lehman’s story while browsing the internet, and included it in
my list of various temperaments out of curiosity. Computing values of DFT for all major scales in all these temperaments, I
noticed an exceptional quality of LT, only equaled by Werckmeister’s IV, or septenarius. (4) The notion of MSS was formulated
in order to sum up this quality in a single number, for the sake of simplicity.

[0.3.5] Of course, I do not claim that the best temperaments (musically speaking) are just the ones with the greatest MSS. For
instance,  equal  temperament  gives  an  infinite  value  for  MSS,  but  nowadays  specialists  agree  on  the  fact  that  the  equal
temperament was abhorrent to Bach,  as  it  still  is  to baroque musicians.  The computation of MSS should come after  all
musicological arguments, enabling one to choose among temperaments already acknowledged as musically interesting.

[0.3.6] Readers are invited at this point to listen to the pleasant sound of the recordings in LT, which can be found on this
page. Together with the record value of MSS, this makes a convincing case for Lehman’s hypothesis. But arguments, like a
razor, (5) cut both ways: some lesser known temperament might achieve a better MSS than LT. Readers are strongly invited to
test the temperaments they like best against LT with the formula for MSS given in section 1. The computation is possible even
with a  pocket  calculator  (especially  if  it  manages  complex numbers)  and only  takes  a  few lines  of  programming with a
computer. For instance, some alternative interpretations of Bach’s scribble have been offered, and the values of MSS for these
temperaments are of interest.

[0.3.7] On the other hand, should some other temperament with a greater MSS supersede LT one day, the fact will remain that
most or all temperaments reportedly in use around Bach’s time have a much smaller MSS, and this will remain a significant
hallmark of LT.

1. Sameness of Scales in a Temperament

[1.0.1] I fear it is impossible to appreciate the import of the MSS value without some attempt at understanding the math
behind it: most of the strength of the argument derives from Theorem 1. I have made use of footnotes and appendices in
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order to lighten the reading as much as possible.

[1.0.2] Roughly speaking, the DFT defined below enables one to appraise how close a scale(6) is to the mathematical paradigm
of a regular polygon. This makes musical sense, because the largest DFT values characterize the major scales. As it happens, the
distribution of these values calculated for the 12 major scales exhibits a very special feature in the case of LT.

[1.0.3] The next subsection (1.1) attempts a non-technical description. Readers averse to mathematics are invited to read it and
then skip to section 2, with tables of values of MSS for a number of temperaments. The precise definitions leading to the MSS
are given in the sequel of this section (1.2–1.4), but the truly technical parts (the proofs of the Lemma and Theorem) are
confined to the last section (3.2).

[1.0.4] I hope that most readers will go through the whole section, thus getting the gist of the argument, even if understanding
the actual proofs requires some training in that prolific branch of mathematics called harmonic analysis. The complexity of the
diatonic underlies the major scale and is hence responsible for a large part of the beauty of western classic music and the
fulfilling emotions that we experience with it.

1.1. Major scales are regular heptagons (almost)

[1.1.1] Consider the C major scale in fifth order: F C G D A E B. A tone-deaf person might not perceive that the interval
between the extreme notes, B-F, is smaller than the other fifths. After all, the difference is the smallest possible inside the
twelve tone universe, e.g. a semitone (or augmented prime). This means that the sequence of seven notes in the major scale is
as close as can be, in the twelve-note ambient universe, to a completely regular sequence (a perfectly regular sequence is the
whole tone scale, for instance). This can be seen graphically in Video 1 (the major scale is in blue and the nearest heptagon is
in red).

[1.1.2]  The  mathematical  tool  that  measures  such  regularities  is  the  Fourier  Transform (rigorously  defined  in  the  next
subsection). It enables one to simplify considerably the data for periodic phenomena: in the domain of sound, for instance, a
sound  file  recording  one  note  played by  a  musical  instrument  can  be  summarized  by  a  few figures  giving  the  Fourier
coefficients, which are in this case the weights of the different overtones. In the study of scales, we use a slightly simplified
version, called the Discrete Fourier Transform.

[1.1.3] For a perfectly regular scale, like the whole-tone, the value (1) of this Fourier Transform would be equal to 1, or
100%. The major scales are the twelve seven-note scales with the greatest value of this (1)—not 100%, but about 98%.
This is the most important point about (1): it characterizes the major scales among all possible seven-note scales.

[1.1.4] Now, in unequal  temperaments, all  scales are different, if  only slightly.  Hence, for each tonality A, we compute a
different value of (1). The MSS is then defined as a measure of the discrepancy of the twelve values of (1) for the
twelve major scales: the higher the value of MSS, the closer the values of (1) are to one another.

[1.1.5] For high values of MSS, we expect all (major) scales to be equally close to their abstract model. Indeed, an infinite value
of MSS means an equal temperament, wherein all scales sound identically. Hence, MSS can be taken as a measure of how
much a temperament achieves Bach’s goal, where all tonalities coexist peacefully inside the same temperament.

1.2. Discrete Fourier Transform of a Scale

[1.2.1] Research on the DFT of scales originated in the preparation of the John Clough Memorial Days in Chicago (July 2005),
organized by Richard Cohn and David Clampitt. There, Ian Quinn’s ground-breaking dissertation (2004), wherein he rekindled
an original idea of the late David Lewin (1959), aroused interest in DFT among several researchers. Fresh developments may
be found in Amiot 2007. But a slightly different track, initiated a few months later by Thomas Noll,  led to the present
indicator of sameness of scales:

Definition 1. Let all notes inside an octave be given by a real number between 0 and 1; this means choosing a reference note (say C) and
measuring all intervals from there in cents/1200. Then the Discrete Fourier Transform of a scale = (a ,a ,...a )  [0,1] is the map1 2 n
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   (it is the Fourier Transform of the map  ). The values (0), (1) ... (n - 1) are the Fourier coefficients of scale .

[1.2.2] For instance, the (equal) tempered C major scale would be C  = (0, 1⁄6, 1⁄3, 5⁄12, 7⁄12, 3⁄4, 11⁄12) and its DFT is

[1.2.3] It may be useful to recall that the Fourier Transform is in general a tool for checking the periodicities of a given
phenomenon. Here, it is easily seen that the map  is defined from the cyclic group with n elements  to the field  of
complex numbers. (7) The notes can be visualized as the points  on the unit circle, which is the quotient structure of
frequencies modulo octave: see Figure 2.

1.3. DFT and Maximal Evenness

Lemma 1. | (1)| = 1  is a “regular polygon,” i.e.

   For any other scale, for any t, | (1)| ≤ 1.

[1.3.1] The first case | (1)| = 1 occurs for instance when  is a whole tone scale (in equal temperament), or an augmented
triad, or diminished seventh. But of course a seven note scale in a (decent) twelve note temperament cannot be a regular
polygon, as 12 cannot be divided into 7 equal integral parts (see Figure 2). Still, the best approximations of regular polygons
are musically interesting scales:

Theorem 1. Let  be the set of scales of n notes chosen in some equal temperament with m notes (m > n), meaning

   Then the scales in with biggest value of | (1)| are the Maximally Even Sets.

[1.3.2] What are Maximally Even Sets? The ME Sets were defined in Clough and Myerson 1985 and extended in Clough and
Douthett 1991. A recent and thorough paper on their features is Douthett and Krantz 2007, and the connection with DFT,
discovered in Quinn 2004, is investigated in Amiot 2007. The proofs of the above Lemma and Theorem are relegated to the
appendix, together with technical definitions. For the moment let it suffice to mention that

Informally, a ME set is the “most regular” repartition of n notes in a given temperament.1. 
ME sets (in equal temperament) are musically prominent scales: for instance the pentatonic, whole tone, major and
octatonic scales all are ME sets in twelve tone temperament.

2. 

In several cases, including the major (and pentatonic) scales, this Maximal Evenness implies the “generated” quality, e.g.
the major scale is generated by consecutive fifths.

3. 

This means that in a given context (here an equal-tempered chromatic ambient universe) the size of | (1)| measures the
regularity of the scale, i.e. its closeness to a regular polygon. The above theorem, as the next proposition, can bear some degree
of approximation, (8) and hence both still stand in all common tunings, which are close to equal temperament.

[1.3.3] However, we only need the case of 7-note ME sets in 12-tone temperaments:

Proposition 1. In 12 tone equal temperament, the Maximally Even Scales with 7 notes (e.g. the seven-note scales  with greatest value of |
(1)| ) are precisely the 12 major scales.

[1.3.4] Now we can see that | (1)| really measures the closeness of 7-note scale  to the theoretical regular heptagon,
which appears as a common goal,  a Platonic model,  that major scales strive to approximate as best they can: this is the
meaning of the last proposition. (9)

[1.3.5] From now on, all we need to remember is this meaning of | (1)|. For instance, if scale  is a regular heptagon (say
a “whole-tone scale” in 14-note equal temperament) then | (1)| = 1; for any major scale A in 12-tone equal temperament,
| (1)| ≈ 0.988846. This is a fundamental feature of major scales and not a mere curio: a basic fact about DFT, Parseval’s

M
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formula, states that ∑ | (1)|2 = 1 = 100%. Hence, when | (1)| evaluates around 0.98 for a major scale, it
means that almost all the energy of the scale is concentrated in this coefficient, as all other Fourier coefficients are negligible.
In  the  case  of  other,  random,  seven-note  scales,  the  energy  is  spread  between  the  seven  coefficients:  for  a  chromatic
succession of 7 notes, | (1)| is roughly 0.74; see Figure 3 (the scale with the highest peak is the diatonic; the other one is a
random collection of seven notes). It is also worth considering the scales with second best value of | (1)|, which are quite

different from major scales ([0234568], e.g. G , A , B, C, C , D, E).

[1.3.6] We are now ready to define the sameness coefficient of scales (MSS) inside a given temperament.

1.4. Sameness Coefficient

[1.4.1] A temperament is simply a collection of 12 tones, i.e. a subset  of [0,1] with 12 elements. Henceforth we will only
consider scales with seven notes, that is to say ordered sequences of seven elements of . Let us assume that the elements of

 are given in order:

Definition 2. A temperament, or tuning, is an ordered sequence of twelve different notes:

Definition 3. A major scale in temperament is a sequence of the form

where α is a constant and the k s are the indexes of the standard C major scale: 0,2,4,5,7,9,11

Example: say α = 5, we get the notes a  with i = 5, 7, 9, 10, 12 = 0, 14 = 2, 16 = 4, i.e. F major.

[1.4.2] This enables us to compute | (1)| for all α = 0...11, i.e. for the 12 major scales in . For instance, taking for  the

so-called Pythagorean tuning with the “wolf fifth” between A  and F, we get the following values for all major scales (in
semitone order):

0.9891; 0.9891; 0.9856; 0.9927; 0.9856; 0.9915; 0.9856; 0.9856; 0.9915; 0.9856; 0.9927; 0.9856

[1.4.3] Notice that all scales that do not contain the wolf fifth are isometrical, and hence share the same absolute value of the
Fourier coefficient. The most striking fact about these values is their closeness to 1, which reflects the characterization of ME
sets in Theorem 1. But the most important feature in a given temperament is the distribution of these values, which are
exceptionally close to one another in the case of LT. In order to visualize this phenomenon more easily, we define

Definition 4. The Major Scale Sameness (MSS) of temperament  is the inverse of the biggest discrepancy between values of coefficients |

(1)| for all twelve major scales in :

[1.4.4] This quantity is highest when all values of | (1)| (for all 12 major scales) are the closest, i.e. when all major scales

are almost equally similar to the ideal (theoretical) model of the regular heptagon. For instance for Pythagorean tuning, we get

a maximum (resp. minimum) value of 0.9927 (resp. 0.9856) and hence MSS (Pyth) =   ≈ 140.

[1.4.5] For LT, no major scale comes higher than | (1)|    = 0.991, but none comes lower than 0.987, so the MSS is

particularly high: MSS (LT) =   ≈ 250 (actually a little more; see Figure 5 below).

1.5. Musical relevance: playing in all tonalities

[1.5.1]  Most  analyses  of  different  temperaments,  including  Lehman’s,  put  forward  some  particular  intervals.  The  MSS
coefficient on the other hand is comprehensive: it gives a measure of the sameness of all major scales in . Though it tells

nothing about the closeness of E-G  to the pure third, it is well in tune with Bach’s own project in the WTC. (10) A tuning with
high MSS means that ALL major scales are similarly close to the theoretical heptagon, i.e. similarly “good.” Or should one say,

t=0...n-1 

i

i
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“wohl”? Video 1 shows all diatonic scales in LT, together with their closest heptagons. It can be observed that though the 12
scales differ among themselves, they are quite similar in the way they resemble the regular heptagon: this is what MSS is all
about.

2. Comparison of MSS for different tunings

[2.0.1] This section is devoted to numerical results, i.e. tables of values of MSS.

2.1. Tables

[2.1.1] Let us begin with a computer program for the computation of MSS on a given . It is convenient to put the values of
the 12 elements of  in some table:

 = {t , t , ... t }

To do this, take any table of a temperament in cents and divide by 1200 to get the a s. This will be the input of the function
that computes the MSS. Now we loop through the twelve major scales: For α = 0 to 11, compute the scale α and its first
Fourier coefficient c :

Lastly, find the minimum and the maximum in those 12 values; subtract the former from the latter, and take the inverse(11) of
the result:

[2.1.2] Figure 4 gives this algorithm in Mathematica®, for scales with any number n of notes.

[2.1.3] In Table 1, consecutive fifths are given in cents from the origin; so in the program listed in Figure 4, the variable
gamme had to be divided by 1200. All origins (A) have been set to the same value, 0. Of course, different origins can be given

for each tuning, but this is equivalent to some rotation on the circle of notes, and the quantity MSS, being geometric in
essence, is invariant under such transformations. (12)

[2.1.4] I selected only a few elements in the extensive family of meantone tunings. Lindley’s tunings are tabulated from Lindley
and  Ortgies’s  acerbic  refutation  (see  Lindley  and  Ortgies  2006):  the  first  two  are  built  respectively  with  sevenths  of
Pythagorean and syntonic comma, and the last is the tuning used in the Michaelstein conference (this one found favor with
Lehman). Similarly, I added the Sparschuh tuning and the previous Lehman proposition (dated 1994) as possible competitors,
other interpretations of the scribble being, of course, of particular interest.

[2.1.5] I hope that through the process of chain-quotation, the exact values of these tunings have been preserved. As the
computations have been carried through the professional software Mathematica®, with 64 bit arithmetic, we can hope to be
rid of the rounding errors that blemished several controversies, and that resulted from incompatible unit conventions and
inadequate software (Excel®).

[2.1.6] It is quite clear on these values that LT achieves by far the best value of MSS among temperaments prior to WTC,
except for Werckmeister 4(13) which reaches almost equal value. It is interesting to see which classical tunings figure well in
this table: Kirnberger’s are in good standing, and so is Valloti, but it is notable that the Pythagorean tuning supersedes Zarlino
and the meantone temperaments. Remember that MSS measures a closeness between major scales, not the quality of, for
instance, the twelve fifths.

[2.1.7] Graphic comparison of a few TeTs is available in this movie, where one can see the value of all Fourier coefficients
changing with the different diatonic scales. The value of the leading coefficient a  is apparent as the radius of a golden disk,
whose size varies more or less according to the chosen TeT.

2.2. Minor scales

0 1 11

i

α

1
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[2.2.1] As watchful readers will have noticed, the MSS has so far left aside half of the WTC: J.S. Bach also wrote preludes and
fugues in all minor tonalities. MSS is originally a measure of “diatonicity”: could it also be used for testing minor scales? If by
“minor,”  one  should  understand  the  harmonic  minor  scale,  then  the  theoretical  relevance  is  poor. (14)  But  this  natural
assumption, taught to every kid in music school, has long been challenged by specialists. (15) Perhaps the most “natural” form
of the minor is also diatonic, meaning that MSS is relevant both for minor and major tonalities.

[2.2.2] It  might be interesting,  though, to try this comparison on other familiar scales,  like the ascending melodic minor
[023579a].

2.3. First five fifths equal

[2.3.1] Permutations of the values of the different fifths of LT can be tried. The result is illuminating. As we have already
discussed, an optimal value of MSS (= ∞) is attainable, in equal temperament. This is not realistic, as most musicologists now
agree that equal temperament was as abhorrent to Bach as it was to many, before and afterwards.

[2.3.2] So it should come as no surprise that some possible (nonequal) temperaments improve the value of MSS. This is the
case for Werckmeister IV, which, though rational-valued, is a close approximation to equal temperament. (16) I found several
such tunings by trying all permutations of the values of fifths that Lehman attributed to the three different kinds of loops in
Bach’s scribble. For instance, the one which corresponds to the sequence of adjustments 0, -2, -2, -2, 1, -2, 1, -1, 0, -1, 0, -2, (17)

has a much higher value of MSS.

[2.3.3] Such artifacts are generally very close to equal temperament. I did not recognize any known tuning in them, though
learned readers might.

[2.3.4] But strikingly again, LT is still a winner when these permutations are confined to the six last fifths, i.e. when we keep
the first five fifths equal: here I am discussing adjustments of the form -2, -2, -2, -2, -2 followed by any permutation of 0, 0, 0,
-1, -1, -1. This must be relevant, as it was and still is common practice to start the tuning of a keyboard instrument by five
equal fifths (often slightly shorter than a pure fifth), thus tuning equally the Guidonian hexachord FCGDAE. I certainly did,
long before I ever heard of Bradley Lehman. This is true of all meantone tunings, for instance, and also very obvious for a
musician accustomed to tonal music, since it is still desirable to have many equal fifths inside the scale(s) he or she plays in.
Many harpsichord, organ, or piano-forte playing readers will acknowledge that they begin their own tunings by equal fifths
between F-C-G-D-A-E. See below a discussion of O’Donnell’s objection, though (2006).

2.4. Other values of the wiggles

[2.4.1] One weak point of Lehman’s proposition is his arbitrary calibration of the wiggles as multiples of PC/12 (PC = a
Pythagorean comma). On the other hand, changing this value ever so slightly falls within the approximation involved in any
practical tuning—this is not exact science! On investigation, I tried variants of LT, replacing the unit PC/12, or 1.955 cents, by
values close to it. The value of MSS can thus be increased slightly: if the fundamental wiggle is reduced to 2.16 cents, MSS
reaches 278.7 instead of 260. This is the best possible improvement in that direction, with

 = {0; 95.685; 196.71; 297.795; 393.42; 498.105; 593.73; 698.355; 797.64; 895.065; 997.95; 1091.78}

[2.4.2] Of course, a difference of 0.165 cents is hardly perceptible by ear—it is roughly a 150th of a comma! It is only the
different order of fifths, the geometry of the scale, and not the change of comma, that explains the record value of MSS; the
different value of the comma in Lehman’s first proposition in 1994 (labeled Lehman94 in Table 1) has nothing to do with its
poor value of MSS.

2.5. Other interpretations of the wiggles

[2.5.1] Some have questioned the original note of the tuning: is it F—a common practice—or do some further curlicues along
the scribble (look again at Figure 1) indicate the position of C, or D, or some other note? As far as the MSS is concerned, this
is irrelevant, as a “well tempered” instrument will remain so even if the tuning is transposed, in the sense that all tonalities still
sound well. Of course it would be nice to know exactly Bach’s tuning (giving specific different colors, i.e. Affekt, to different
tonalities) but MSS cannot discriminate between tunings there, as it is invariant under a change of origin of the tuning. (18)

Similarly,  MSS cannot help us decide whether turning around the page (as Lehman did) is permitted, or mandatory:  the
inversion of a tuning shares the same geometric values, (19) and the sequence of wiggles (-1, -1, -1, 0, 0, 0, -2, -2, -2, -2, -2) has
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the same MSS as LT—a nice feature for contrapuntalists. In other words, using Lehman’s recipe with fourths instead of fifths
yields exactly the same value of MSS.

[2.5.2] MSS can help, though, to discuss whether the wiggles mean consecutive fifths or consecutive semitones. This is a
strong argument, as O’Donnell points out (O’Donnell 2006) that the order of tonalities in the WTC is given in semitones not
in fifths—but Chopin, for instance, did the opposite in his Preludes, which clearly refer to the WTC. Indeed, MSS makes a fair
case for O’Donnell’s proposed tunings, as seen from the values of MSS in Table 2, computed from Lehman’s comprehensive
answer to O’Donnell:

[2.5.3] Several falsifications, in the sense of Popper, have been tried. In each case, LT emerges a winner. It is clearly a very
special temperament, not only in its closeness to Equal Temperament, but in the homogeneity of all 24 scales. This constitutes
a strong vindication of Lehman’s claim.

3. Conclusion and perspectives

[3.0.1] The MSS criterion arguably puts emphasis on the sameness of fifths inside  the temperament.  This goes some way
towards explaining why permutations of the wiggles fail to improve MSS, when the first five are kept identical (see subsection
2.3); it also explains the fair value of MSS for Pythagorean (Ptolemaic) tuning, for instance. But this argument has its limits, as
the discussion on all permutations of the wiggles proves. Still, it is quite important musically, as keyboard instrument players
will readily agree, to find in any major scale a sequence of 3 (and preferably more) identical fifths in a row. This makes it easier
to tune together with string instruments, for instance.

[3.0.2] Apart from aesthetic and other indefinitely debatable arguments, the computation of MSS gives a steadfast comparison
point for tunings aimed at tonal music.  Of course, it should not be considered as the sole criterion for the quality of a
tuning—for  instance,  equal  temperament  would  then  be  unbeatable,  and  Pythagorean  tuning  would  be  better  than
Kirnberger’s—but it does make sense to use it, among other criteria, to compare tunings already short-listed for historical and
musical reasons.

[3.0.3] A limitation to the discriminating power of MSS is its indifference towards isometric transformations. Starting the

tuning with C or F  or any note does not change the value of MSS, neither does tuning in fourths instead of fifths, i.e.
reversing the cycle of fifths. This last point is one that raised much discussion: is Lehman right in turning around the first page
of  the  WTC?  As  we  discussed  previously,  MSS  brings  no  answer  there.  But  consideration  of  the  phase  of  the  Fourier
coefficients (and not only of module), or maybe scrutiny of other Fourier coefficients (e.g. (0)), might help refine the analysis

(I am indebted to Thomas Noll for these suggestions). Other measures of the sameness of scales inside a given temperament
might, and should, be proposed, as this criterion makes sense when considering the WTC. (20) For one thing, the MSS is
designed primarily for comparison of the major scales, and perhaps some other measurement should give equal standing to the
minor scale in some form.

[3.0.4]  The computations made for this paper are by no means exhaustive,  and I  hope that  some other researchers will
complete them. I intentionally  refrained, though, from computing MSS on many tunings that  either fall  far from Bach’s
universe or appear too arbitrary. Should some major tuning be lacking in this analysis, it is because I was not aware of its
existence. Some independent computations—independent from the author’s—have confirmed that LT has a greater value
than most of 60 Baroque (or earlier) temperaments. (21)

[3.0.5] A puzzling case is Werckmeister 4, a serious challenger of LT for the value of MSS. It  stems from most modern
authorities that the relationship of Bach to Werckmeister was more about counterpoint than tuning, but maybe this fresh
evidence will rekindle interest in the notion that Bach shared at least some of Werckmeister’s original ideas about tuning.

[3.0.6] My modest intention was to add some nonsubjective evidence to the discussion of Lehman’s hypothesis. In the present
state of the calculations in Table 1, the MSS criterion strongly supports Lehman’s theory. Maybe further efforts in the same
line will help refine his claim—or crown some other tuning that I cannot foresee.

Appendix: the mathematics of MSS

3.1. Proof of lemma

Proof. From Parseval’s identity (see below), if | (1)| = 1 then for all t  1, (t) = 0. Hence by inverse Fourier transform
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(Plancherel’s theorem) the elements of  are given by

which puts them on a regular n-gon.

The other assertion | (t)| ≤ 1 is a consequence of Parseval’s identity:

□

3.2. Proof of theorem

[3.2.1] I give the proof of the theorem in the simpler case(22) when the number of notes n is coprime with the cardinality of
the temperament, m. In this paper we have n = 7, m = 12. In such cases, a ME set is generated (Clough and Myerson 1985), i.e.
the indexes of its notes are in arithmetic sequence modulo m, with a ratio f of the sequence that is the multiplicative inverse of
n mod m. In the case n = 7, m = 12, this expresses the fact that the major scale is a sequence of fifths, i.e. (0, 7, 7 + 7 ≡ 2, 9, 4,
11, 6) or any transposition thereof. The ratio f = 7 is the inverse of n = 7: it checks f × n = 7 × 7 = 1 + 4 × 12 ≡ 1 mod 12.

Proof. I begin with pointing out that the map (k, j) n × k - m × j is one-to-one (and onto) from  ×  to , where

 stands for the cyclic group with p elements. This morphism (it is well defined, and obviously linear) of -modules  is

injective:

using Gauss’s lemma (m divides n k but is coprime with n, hence divides k, similarly for n); and hence bijective because the
cardinalities of both domain and codomain are finite and equal.

[3.2.2] This enables us to choose n couples (k , 0), (k , 1) ... (k , n - 1) in  ×  with n k  - mj {0, 1, ... n - 1} (mod m) ×

n, (choosing j first then k ) hence  stays between 0 and 

[3.2.3] Hence the vectors occurring in the computation of (1), i.e. the , are as close together as possible. This
maximizes their sum, as the cosines of their projections on the direction of their sum get as close to 1 as possible. This is
proved by the following “huddling lemma,” whose general form may be found in Amiot 2007.

Lemma 2. Let , j = 1 ... n be n different mth roots of unity. Their sum has length at most  i.e. the maximum value

is obtained when all these points are huddled together.

Proof. Put S = ∑ . Then | |≥ Re  = ∑cos(2k π ⁄ m). Say for instance that n is odd: then there are exactly n integers

between  and .

[3.2.4] Unless the k are precisely these integers, there exists some j  with |k | >  and a value k′  [ , ]

that is not one of the k . As

the sum of cosines is increased when k′ is substituted to k . This can be done till all the k s are in [ , ], and as

there are n such k s, they must be the n consecutive integers lying in this range. Then Re  is at last maximal, and so is | | =
Re  (this last equality is now true by symmetry). The case “n even” is a little trickier but similar and will be left to the reader,

0 1 n-1 j

j

j 

j 0 j 0

j

j 0 j

j
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as this paper only needs a proof when n = 7, m = 12.  

□

[3.2.5] We return to the proof of the theorem. The lemma proves that the maximum configuration occurs when

Multiplying by f = n -1 mod m yields

i.e. an arithmetic progression with ratio f. The most general case is obtained by translation (i.e.  a transposition, musically
speaking) of this one.

□
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Footnotes

1. Counterclockwise, i.e. decreasing the size of the fifth.
Return to text

2. Lehman uses one twelfth of a comma, which is indistinguishable in practice.
Return to text

3. For instance, many pages have been written about the quality of the single third E-G  in LT versus other ways of tuning;
but  the  overall  number  of  nice  “tertiam minorem,”  as  Bach  calls  them,  might  also  be  considered  of  equal  or  greater
importance than that of major thirds, or the size of whole tones, or any other plausible feature of a given temperament.
Return to text

4. In the rectified version, assuming the value 176/196 in the division of the monochord should be read as 175/196, as many
have corrected.
Return to text

5. Occam’s razor? See O’Donnell 2006.
Return to text

6. Meaning a sequence of notes in a given temperament.
Return to text

7. Adding n to t does not change the value of (t).
Return to text

8. The DFT is a continuous map: if | (1)| > | (1)| in equal temperament, the small modifications of arguments  and
 resulting from nudging some notes away from their equal tempered position, will only slightly disturb the values | (1)|, |

(1)| and the inequality will still stand.
Return to text

9. Obviously this appears as a mathematical feature, not a musical one. The fact that the major scale is Maximally Even is
highly relevant to tonal functions. This is discussed in the literature on ME sets and the reader is invited to consult the
references given in the bibliography.
Return to text

10. Admittedly Bach does mention major and minor thirds on the front page, plus tones and semi tones (see Figure 1), but he
insists on the possibility of playing all these intervals in all 24 tonalities.
Return to text

11. In order to facilitate comparison.
Return to text

12. Incidentally, it is also invariant under inversion (which amounts to reversing the lists), as the inverse of any major scale is
also a major scale.
Return to text

13. I wonder whether this temperament ever had practical importance—who ever managed to tune a 196/139 interval by ear?
Return to text

14. Still  I  felt compelled to compute the mSS, the equivalent of MSS for harmonic minor scales, and rather strangely, it
concurs with Table 1.
Return to text
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15. “It may be of some interest that Johann Sebastian Bach in his manual on thorough bass (reprinted in Phillip Spitta’s
biography of Bach as Appendix XII to Vol. VII) expressly states the identity of the minor mode with the Aeolian system” (p.
46, Heinrich Schenker [Harmony], Oswald Jonas, ed., Elisabeth Mann Borghese, trans. 1954, reprinted MIT Press 1973).
Return to text

16. Hearing the WTC in this tuning should be an interesting experience, considering it is so far the only competitor to LT for
MSS.
Return to text

17. Whereas LT gives -2, -2, -2, -2, -2, 0, 0, 0, -1, -1, -1[, 0]. The unit chosen by Lehman is a twelfth of a Pythagorean comma.
Return to text

18. Transposition, in the musical sense, does not change the absolute value of the DFT.
Return to text

19. The DFT is turned into its conjugate. See Amiot 2007.
Return to text

20. For instance, some Haussdorf distance between polygons up to isometric transformations.
Return to text

21. I want to thank Thomas Dent, a careful reader of an earlier version of my published paper in MTO 15.2, for pointing out a
numerical  blunder  that  affected  several  values  in  Tables  1  and  2.  They  have  been  corrected  as  of  October  11,  2009.
Fortunately, the conclusion that the Major Scale Similarity of the temperament proposed by B. Lehman is greater than almost
all previous temperaments is still valid. I certainly hope that musicologists will compute their own values for MSS, and that this
approach becomes a standard tool for appreciating the quality of a temperament.
Return to text

22. It still stands in the most general case, following the framework of Amiot 2007.
Return to text
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