Cryptic Audiodiversity and the Dissonant Perfect Unison

Timothy Cutler
As a result of the voice exchanges, it also transforms the meaning of the A₆ major harmony that initiates the da capo statement of the Allegretto (see Example 2c). Now the upbeat tonic chord is enveloped by D₈ sonorities that are stronger both metrically and agogically. The stable A₆ major harmony that began the composition is transformed into a contrapuntal chord in the da capo, one that supports a passing tone, C, on its path toward B₉. From the last measure of the Trio to the second measure of the Allegretto, the tonic upbeat fulfills an ornamental role within a IV-(I)-II₆ progression, an expression of the 5-6 technique that plays a central part in Schubert’s piece.\(^6\) Contrary to the initial statement of the Allegretto, partial harmonic solidity in the da capo is not achieved until I₆ enters in measures 3–4.\(^5\)

\(^5\) Large quantities of intervening material are not required for similar-looking objects to portray dissimilar functions. In the opening movement of Mozart’s String Quartet in D minor, K. 421, several instances of “I₆” appear within the close proximity of a four-measure span (see Example 3). Relatively stable first-inversion tonic harmonies occur twice in both measures 36 and 38. The latter harmony in each measure closely resembles its ensuing downbeat, with the only visual distinction being decorative suspensions of scale-degree six in the melody. Upon closer inspection, however, the “I₆” chords in measures 37 and 39 have an altogether different function from their predecessors. These downbeats initiate functional voice-exchanges with the following beats in the outer voices, binding them together and suggesting that they share corresponding harmonic functions. The downbeats of measures 37 and 39, disguised as I₆ harmonies, possess dominant function in the form of inverted cadential ⅔ chords.\(^6\) Along with the voice exchanges, this reading is supported by harmonic syntax (predominant harmonies occur at the ends of measures 36 and 36), as well as the strong metric placement of the inverted cadential ⅔ chords. In many situations, composers use inverted cadential ⅔ chords to avoid problematic voice leading.\(^7\) In this instance, using traditional cadential ⅔ chords with scale-degree five in the bass would produce empty fourths on the downbeats of measures 37 and 39.\(^8\)

\(^6\) Unlike the previous examples, Chopin’s Polonaise in A-flat major, op. 53, illustrates that intervening material is not a prerequisite in order to express cryptic audiodiversity. Adjacent entities can exhibit distinct functions even when they have congruent exteriors (see Example 4). An elementary change from tonic to dominant harmony is sufficient to transform the meaning of the pitches that constitute Chopin’s famous left hand ostinato. While the functions of C₄ (passing tone) and B (chordal skip) remain constant, E alternates between a stable chord tone and a dissonant appoggiatura, and D₄ begins as a passing tone and becomes a chord tone when dominant harmony arrives. Likewise, metrical placement and motivic factors distinguish the middleground function of upbeats from their ensuing downbeats in the first two measures of Brahms’s Waltz in E major, op. 39 no. 5. The anacruses express the primary harmonies at those moments, whereas the downbeats serve as dissonant suspensions with respect to the prevailing harmonies in measures 1 and 2 (see Example 5).

\(^7\) Cryptic audiodiversity applies not only to closely resembling material recurring after varying amounts of time, but also to the dimension of structural hierarchy. Separated by the conceptual distance of structural levels, the same object can adopt contrasting characteristics according to its position relative to the surface and the Ursatz. In the ternary-form second movement of Mendelssohn’s Violin Concerto in E minor, op. 64, the tonality of the outer sections, C major, is unambiguous. Meanwhile, the key and mode of the middle section is, at least initially, less clear (see Example 6). The first harmonic sonority in measure 52 might suggest that the middle section is in A major, and the content of the entire measure might imply the key of D minor. In reality, A minor represents the tonal core of this section, but demonstrating this is not a straightforward task. For example, within the middle section’s twenty-seven measures, there are only two fleeting statements of root-position A minor triads (in measures 58 and 67). It may seem audacious to begin an A minor section with a triad in the parallel major, but at a deeper level the A major triad stands for a root-position A minor tonic harmony that has been contrapuntally embellished and contracted into a single gesture (see Example 7).\(^9\) Accordingly, the same object displays contrary characteristics at different structural levels: on the surface, the downbeat of measure 52 appears as a major triad that is rapidly transformed into a dominant seventh chord; at a deeper level, this sonority represents a stable A minor tonic triad.

\(^8\) This interpretation is not mere idle speculation—one gains the impression that Mendelssohn composed the passage with similar thoughts in mind, as suggested by an earlier version of the Concerto, edited by R. Larry Todd and recently published by Bärenreiter (Mendelssohn-Bartholdy 2007). The 1844 draft features the very A minor harmony that constitutes the genesis for the A major chord used in the final product one year later (see Example 8). If both versions are sensible, the 1845 score more effectively accentuates common ground between distinct formal sections. First, the primary themes of the outer and inner sections feature motion from E to F, and the 1845 version allows both measures 9 and 52 to begin with major triads. Second, the A major and D minor sonorities in measure 52 recall similar progressions in measures 19–22. And third, by choosing an A major triad, the middle section begins with a familiar sonority. Starting with the A minor triad of the 1844 draft is somewhat jarring because this harmony has yet to appear in the second movement.

\(^9\) What remains is to investigate more literal manifestations of cryptic audiodiversity, in which nearly identical objects occur simultaneously yet still demonstrate highly contrasting characteristics. Let us start with one of the most stable of all intervals, the perfect octave. A consistent thread in its description is the concept of equivalence. Thus Allen Forte (1974, 7) writes: “The
notes which form the 8ve always have the same letter name. One of the most fundamental axioms of tonal music is that notes which bear the same name are equivalent.... A note which stands at the interval of an 8ve from another note and which has the same letter name is regarded as a duplication or 8ve doubling of that note, not as an additional and different chordal element.” And, according to Rameau (1722, 11), the “…octave has only those properties communicated to it by the fundamental sound which generated it…. If one sound forms a perfect consonance with the fundamental sound, it will also form a perfect consonance with its octave; if another forms an imperfect consonance or a dissonance on the one hand, it will also form an imperfect consonance or a dissonance on the other….” Nevertheless, even this bedrock of musical stability can be transformed into a dissonant entity when situated in the proper context. Brahms features a dissonant perfect octave at the beginning of the Waltz in B major, op. 39 no. 1 (see Example 9). The bass voice reiterates a consonant tonic pedal until the last beat of measure 4, while the remaining upper parts unfold an ornamental tonic-predominant-dominant-tonic progression above the pedal. In measure 3, the melodic B-naturals reside within the sphere of decorative dominant harmony, not the underlying tonic pedal. The perfect octave between the two hands is dissonant: scale-degree one in the left hand articulates stable tonic harmony, and the same pitch classes in the right hand serve as dissonant accented passing tones.

[10] Cited at least as far back as the eighteenth century (Bach 1762, 297), the concept of a dissonant perfect octave is not a new discovery. What appears to be overlooked, however, is that similar events can undermine the seemingly fixed properties of the perfect unison. It is well understood that both tones in a perfect unison can be concordant with their surroundings, as demonstrated by the final measure of J. S. Bach’s Chaconne from the Violin Partita no. 2 in D minor, BWV 1004, or they can clash with their environs, as seen in the third measure of Bach’s Chorale no. 35 (“Gott des Himmels und der Erden”) (see Examples 10 and 11).[10] In the words of Allen Forte, one might conclude that a fundamental axiom of tonal music is that the two tones of a perfect unison will have the same function respective to their context—either both are consonant or both are dissonant. This notion of unison equivalence is taken a step further by Zarlino (1558, 24), Mattheson (Harriss 1969, 216, 797), C. P. E. Bach (Bach 1762, 183–184), and Schoenberg (Schoenberg 1970, 1), all of whom assert that perfect unisons do not even qualify as an interval.

[11] Due to the overarching sentiment that perfect unisons “stand in the relation of absolute equality” (Fux 1725, 38), it makes sense that few, if any, have wondered if a perfect unison can be discordant with itself. It would seem that some musical properties must remain steadfast, no matter what the context. Even so, the question deserves to be asked: can one tone of a perfect unison be consonant while its twin, sounding the very same pitch, seeks resolution?[11] It turns out that it is indeed possible, and it is fitting that J. S. Bach would be the one to demonstrate this ingenious contrapuntal sleight-of-hand and marvelous example of cryptic audiodiversity. In the Preludio from the Solo Violin Partita no. 3 in E major, BWV 1006, Bach emphasizes an explicit tonic pedal at the onset of a baritonal passage in measure 13.[12] Eight measures later, he initiates a series of 7-6 suspensions that encircles the tonic pedal (see Example 12). Although the pedal is situated in a middle voice, it functions as the bass and renders the entire passage a composing-out of tonic harmony. As the sequence of 7-6 suspensions nears its conclusion, something remarkable occurs in measure 27: E§ sounds in two voices (one voice emanates from the violin’s A-string and the other from its open E-string), and while the latter represents the consonant tonic pedal, the former is the seventh in a dissonant 7-6 suspension. This perfect unison is thus discordant with itself and requires descending stepwise resolution to a minor second; as such, it is a true instance of cryptic audiodiversity.[13]

[12] It is understandable if no one has previously noticed this odd form of unison. Due to its apparent simplicity, there should be no compelling reason to investigate aspects of the perfect unison—one would long think it a closed book. Furthermore, the dissonant perfect unison shown in Example 12 is based on a unique contrapuntal situation. Whether it can be generated within dissimilar contexts is still to be determined (at least, no such examples have crossed my mind). The dissonant perfect unison in J. S. Bach’s Preludio underscores the limitless flexibility of our tonal language and represents a veritable sonic depiction of cryptic biodiversity.[14] Indeed, it is a continual source of inspiration to observe how seemingly crystallized musical elements can be rendered malleable and molded in an endless variety of ways when placed in the hands of a master composer.

Timothy Cutler
Cleveland Institute of Music
Cleveland, OH 44106
timothy.cutler@case.edu

Works Cited

1. “We should get accustomed to seeing tones as creatures. We should learn to assume in them biological urges as they
characterize living beings” (Schenker 1980, 6). Biological metaphors have maintained a long-standing role in the analysis of music and the arts in general. Schenker's reliance on principles of organicism has been explicated by authors such as Solie (1980) and Pastille (1990). For a dissenting view on the validity of biological models see Kivy (1993).

2. The single difference between measures 1–8 and 21–28 is not insignificant. Returning to a higher octave on second beat in measure 8, the bass creates a small degree of registral and rhythmic tension that is absent from the end of the Trio. By remaining in the lower register in measure 28, the bass counterbalances the ascending octave in the oboes and produces a greater sense of closure.

3. In essence, I am putting forth the same argument as Edward T. Cone: “In general, there is no such thing as true redundancy in music” (Cone 1968, 46). Similar sentiments are expressed in Zuckerkandl (1956, 212) and Meyer (1973, 44–45). The latter uses the English folk tune “Lightly Row” to illustrate how identical musical passages can undertake contrasting structural functions due to their location in the composition.

4. The changing nature of the opening sonority was pointed out to me by William Rothstein. Other insightful analyses of Schubert's Moment Musical, D. 780 no. 6 have been written by Cone (1982) and Beach (1998).

5. In his essay on Mozart's Symphony no. 40, Schenker uses the term wandernde Melodien (“roving melodies”) to point out that musical entities with comparable semblances do not necessarily possess equivalent structures and function (Schenker 1996, 82). More recent investigations of this topic have been undertaken by Schmalfeldt (1992) and Schachter (1999).

6. Discussions of inverted cadential $\frac{4}{5}$ chords appear infrequently in the literature. The most detailed investigations are found in Rothstein (2006) and Cutler (2008).

7. Mozart employs an inverted cadential $\frac{4}{5}$ chord to avoid outer-voice parallel octaves in the first movement of K. 421, measures 93–94.

8. Contrary to the warm confines of F major, Mozart does not avoid this hollow sonority within the gloominess of the D minor recapitulation (measure 107).

9. The contrapuntal maneuver in measure 52 is not unique: Beethoven's Symphony no. 1 in C major, op. 21 features an opening tonic harmony adorned with a passing seventh, and the initial tonic of Chopin's Mazurka in E minor, op. 41 no. 1 contains both the elided chromatic passing tone and passing seventh shown in the final measure of Example 7.

10. In the third measure of Example 11, the inner voices momentarily converge on a unison C that is dissonant with the prevailing supertonic harmony.

11. While this discussion does not take into consideration microtonality and acoustic illusions created in science labs (examples of the latter can be found in the research of Diana Deutsch at http://deutsch.ucsd.edu), studies in music cognition, such as Rakowski (1990), have demonstrated that the presence or absence of musical context can greatly influence one's perception of the intonation of musical intervals.

12. Bach's arrangements of the Preludio for Lute (BWV 1006a) and orchestra (BWV 29) feature explicit tonic pedals throughout measures 1–29. Additionally, the different registral placement of these pedals in measures 17–29 produces dissonant perfect octaves that are not present in the version for solo violin.

13. The passage shown in Example 12 is transposed to A major later in the movement. Another example of a dissonant perfect unison occurs in the first movement of Bach's Sonata for Violin and Basso Continuo in E minor, BWV 1023.

14. The uniqueness of the dissonant perfect unison also is reminiscent of autoantonyms, rare cases when words have multiple meanings, two of which are the antithesis of each other.