MTO 20.3 Examples: Christopher Segall, Vertical-Shifting Counterpoint

(Note: audio, video, and other interactive examples are only available online)

Example 1. Vertical- and horizontal-shifting counterpoint (Taneev, Podvignoi kontrapunkt, Introduction)

original

first derivative
\(Jv = -9\)

second derivative
\(Jv = 3\)

third derivative
\(Jb = -\frac{1}{2}\)
Example 2. Interval numbers (Taneev, §11)

I stems up
II stems down

Example 3. Positive and negative values for vertical shifts (Taneev, §10)
Example 4. \(J^v \) as the difference between derivative and original intervals (Tancev, §24)

original

\[
\begin{array}{c}
\text{I} \\
\text{II}
\end{array}
\]

\[
\begin{array}{cccccccccc}
7 & 6 & 5 & 2 & 4 & 5 & 7 & 9 \\
\end{array}
\]

first derivative

\[
\begin{array}{c}
\text{I} \\
\text{II}
\end{array}
\]

\[
\begin{array}{cccccccccc}
-2 & -3 & -4 & -7 & -5 & -4 & -2 & 0 \\
\end{array}
\]

\[J^v = -9 \]

second derivative

\[
\begin{array}{c}
\text{I} \\
\text{II}
\end{array}
\]

\[
\begin{array}{cccccccccc}
-2 & -3 & -4 & -7 & -5 & -4 & -2 & 0 \\
\end{array}
\]

\[J^v = -9 \]

\[J^v = -7 \]

Example 5. Suspension symbols (Tancev, §90)

\[
\begin{array}{c|c|c}
\text{1} & \text{(1)} & \ \\
\text{(1)} & \text{1} & \ \\
\text{3} & \pm 3 & \ \\
\text{6} & (6) & \ \\
\text{(1)} & \pm 8 & \ \\
\end{array}
\]

\[n \] \quad \text{suspension in voice I}

\[n \] \quad \text{suspension in voice II}

\[\] \quad \text{suspension permitted}

\[(\text{1}) \] \quad \text{suspension forbidden}

\[\times \] \quad \text{suspension permitted, note of resolution treated as dissonant}

\[\ldots \ldots \] \quad \text{exception: do not add X to } \]
Example 6. Interval table for $J_p = -9$ (Taneev, §128)

$J_p = -9$

original intervals: 0 1 2 3 4 5 6 7 8 9

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

combined conditions on original intervals: 0 1 2 3 4 5 6 7 8 9

Example 7. Counterpoint at $J_p = -9$ with all four possible suspension types (Taneev, §128)

original

_derivative

$J_p = -9$

II

original
Example 8. Variable consonances, marked with X, must be treated as dissonant tones (Taneev, §152)

original

\[
\begin{array}{c}
\text{I} \\
\text{II}
\end{array}
\]

\[
\begin{array}{c}
3 \\
1
\end{array}
\]

 derivative

\[j_v = -12\]

\[
\begin{array}{c}
\text{II} \\
\text{I}
\end{array}
\]

\[j_v = -12\]

Example 9. Interval table for \(j_v = -11\)

\[j_v = -11\]

original intervals:

\[
\begin{array}{ccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
_ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _
\end{array}
\]

derivative intervals:

\[
\begin{array}{ccccccccccccc}
-11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 \\
_ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _
\end{array}
\]

combined conditions on original intervals:

\[
\begin{array}{ccccccccccccc}
0 & _ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
_ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _
\end{array}
\]
Example 10. Counterpoint at $J\nu = -11$ with suspended intervals 5 and 6 (Tanev, Appendix A)

$J\nu = 3, -8$

original intervals:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
& & \text{---} & \text{---} & \text{...} & & & & \\
\end{array}
\]

derivative ($J\nu = 3$):

\[
\begin{array}{cccccccc}
3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
& \text{---} & \text{...} & & & & & \text{---} & \text{---} \\
\end{array}
\]

derivative ($J\nu = -8$):

\[
\begin{array}{cccccccc}
-8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 \\
\hline
& & \text{---} & \text{---} & \text{...} & & & & \\
\end{array}
\]

combined conditions on original intervals:

\[
\begin{array}{cccccccc}
& & \text{---} \\
\end{array}
\]
Example 12. Counterpoint yielding multiple derivatives (Taneev, §190)

original

first derivative
$f_v = 3$

second derivative
$f_v = -8$

Example 13. Interval table for $f_v = -11, 4, -12$

$f_v = -11, 4, -12$

original intervals:

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

derivative ($f_v = -11$):

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

derivative ($f_v = 4$):

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

derivative ($f_v = -12$):

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-12</td>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

combined conditions on original intervals:

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6*</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Note: 6 takes the symbol —— above only at $f_v = -11$ and $f_v = 4$
Example 14. Tanev, String Quintet No. 1 in G major, op. 14, III, Variation 9, measures 14–16 (original), measures 21–23 (first derivative), measures 30–32 (second derivative), measures 43–45 (third derivative)
third derivative

$$J^3_v = -12, 4$$
Example 15. Tanev, String Trio in D major, op. posth., II, measures 1–4 (original), measures 139–42 (derivative)

original

Molto vivace

derivative

(reversible)

Alla riversa
Example 16. Seventh resolution in reversible counterpoint

(a) \[I \rightarrow \text{alla riversa} \rightarrow I^\infty \]

(b) \[I \rightarrow \text{alla riversa} \rightarrow I^\infty \]

improper \hspace{2cm} \text{proper}

Example 17. Dissonance resolution by wedging motions in reversible counterpoint

\[1 \times 3 \times 3 \times 1 \times 3 \times 5 \times 6 \times 4 \times 8 \times 6 \times 8 \times 10 \]
Example 18. Taneev, String Trio in D major, op. posth., II, measures 49–52

(a)

(b)

(c)
Example 19. Taneiev, String Trio in D major, op. posth., II, measures 187–90