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1 Introduction

[1.1] The point of departure for this paper is Kaija Saariaho’s Vers le blanc, a tape piece written
using IRCAM’s CHANT vocal synthesis program.1 Figure 1 summarizes the pitch structure, which
consists of a single large-scale interpolation, achieved by three independent and continuous glis-
sandos, between two chords over a duration of 15 minutes. (Saariaho 1987) About this work the
composer writes, “The harmony is a continuous stream and cannot be heard as a series of changing
chords. One only notices from time to time that the harmonic situation has changed.” To which
any analyst of the piece must respond, “What are these harmonic ‘situations’?”2
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Figure 1: Harmonic interpolation in Vers le blanc.

[1.2] The harmonic interpolation in [1.1] is a continuous transformation from the ordered pitch set
〈0, 9, 11〉 to 〈4, 2, 5〉 with C3 = 0. Order position defines each voice so that voice 1 moves from
0 to 4, voice 2 moves from 9 to 2, and voice 3 moves from 11 to 5. In this case each voice is a
continuously changing stream of pitch. While the process described above is a clear example of
infinitesimal voice leading, the possibilities are not limited to interpolations between pitch sets.
For example, the same ordered sets could be reinterpreted as ordered beat-class sets in a meter of
twelve pulses, as shown in Figure 2. Suppose we were to take 101 samples over the course of the
interpolation. Voice 1 would begin at beat 0 in the first measure, beat 0.04 in the second measure,
beat 0.08 in the third measure, and so forth. The perception of this very slight change in beat
position is that voice 1 gradually migrates from beat 0 to beat 4. Now the question has shifted
slightly to “What are the intermediate rhythmic ‘situations’?”
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Figure 2: Hypothetical rhythmic interpolation

[1.3] Or suppose the sets are interpreted as values for tempos of the form 2
x
12 c beats per minute,

so that (with c = 60) one tempo accelerates from 2
0
12 · 60 = 60 to 2

4
12 · 60 ≈ 76 , while the other

1The present paper is a development of papers presented at the Society for Music Theory 2002 Annual Conference,
the American Mathematical Society 2003 Southeastern Sectional, a seminar on “Modeling Musical Systems” at the
University of Chicago, and a workshop on “Atonal Voice Leading” at the 2003 Mannes Institute for Advanced
Studies in Music Theory. Comments and suggestions from members of these audiences as well as discussions with
my colleagues at Florida State University, particularly Michael Buchler, have been very beneficial and are greatly
appreciated. Special thanks to Robert Peck, Judith Baxter, Richard Cohn, and Joseph Straus for inviting me to
present at these venues. I would also like to thank John Roeder and an anonymous reader for their helpful criticisms
of an earlier draft. Discussions with Ian Quinn greatly sharpened my understanding of the geometric concepts
underlying Section 3.

2There are many other processes unfolding simultaneously—rhythmic interpolations, timbral interpolations, and
so forth. Only the pitch interpolation will be discussed here.
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two tempos decelerate from 2
9
12 · 60 ≈ 101 to 2

7
12 · 60 ≈ 67 and 2

11
12 · 60 ≈ 113 to 2

5
12 · 60 ≈ 80,

respectively. What tempo relationships will result and how will these evolve over time? The sets
could also be interpreted as ordered dynamics (e.g., 0 = ppppp, 1 = pppp, . . . , 11 = fffff ) or
gradations within a timbral space. For the latter, consider 0 to be molto sul tasto, 11 to be molto
sul ponticello, and the values in between to represent median bow positions for a string section.
Gradual changes of timbre could be achieved by staggering changes of bow position throughout the
section, as in Ligeti’s Lontano and other works.3

[1.4] The most general form of these interpolations is a transformation that acts on one musical

object and yields a second object, S
f(t)−→ T . However, instead of achieving the motion instanta-

neously, the transformation is smeared over time so that we hear the (potentially) infinite musical
states that lie between S and T . Our formidable theoretical techniques are of use at exactly two
moments in time for each of the above examples—the commencement and completion of the grad-
ual processes. A random sample of any moment within the interpolations is unlikely to conform
to existing musical categories, even taken in their most general form. Such notions as n-tone equal
temperament, additive rhythms based on a unit pulse, or hemiolas of the form x : y do not apply.
Worse, any sample gives no information about the immediately preceding or succeeding moments.

[1.5] The solution offered in this paper is to consider these continuous transformations as trajectories
through a space constructed according to a particular distance metric. The primary focus will be on
these trajectories and their analytical and compositional applications, though it will be necessary
to discuss the basics of the space in which they travel.4 Before proceeding, the reader is encouraged
to listen to Example 1 [modem] [broadband]—an audio simulation of the pitch interpolation in Vers
le blanc.5

2 Preliminaries

[2.1] We will be discussing ordered sets almost exclusively. Ordered sets will designated by angled
brackets while unordered sets will be designated by curly brackets. For instance, 〈a, b〉 and 〈b, a〉
are both possible orderings of the unordered set {a, b}. Unless indicated otherwise, A, B, etc.,
will be ordered sets of n voices such that A = 〈a1, . . . , an〉, B = 〈b1, . . . , bn〉, and so forth, where
ai, bi ∈ R. For general cases, voice 1, voice 2, . . . , voice n will be identified as v1, v2, . . . , vn. For
instance, the solution set for the equation v2 = v3 contains all sets whose second and third voices
are equal.

[2.2] The set of ordered sets equivalent to A under transposition will be designated as /A/T , the
transposition class or T -class of A. The set class of A—the set of all sets equivalent to A under
transpositional, permutational, inversional, and modular (octave) equivalence—will be designated
as /A/.6 Since the members of A are real numbers, the order of both /A/T and /A/ is infinite.

[2.3] If one set can be transformed into another by moving a single voice a distance of h, then the
3Presumably, this one dimensional timbral space would be a vector within a multi-dimensional space such as Grey

1977.
4See Callender 2004 for a more thorough examination of the geometry of these spaces.
5This simulation compresses the fifteen-minute interpolation into two and a half minutes.
6If A′ = Tx(A), x ∈ R, then A′ ∈ /A/T . For A′ ∈ /A/T , if A′′ is a permutation of {a′1 + c1m, . . . , a′n + cnm},

where ci ∈ Z and m ∈ R is the modulus, then A′′, I(A′′) ∈ /A/, where I is inversion about 0.

3

http://www.societymusictheory.org/mto/issues/mto.04.10.3/callender_ex1.ram
http://www.societymusictheory.org/mto/issues/mto.04.10.3/callender_ex1_isdn.ram


sets are ∆h-related. That is, if 〈|b1−a1|, . . . , |bn−an|〉 is a permutation of 〈0n−1, h〉 (i.e., an ordered
set containing (n−1) 0s and 1 h), then A and B are ∆h-related, written A∆hB.7 Furthermore, the
classes to which A and B belong are also ∆h-related. Thus, /A/T ∆h/B/T and /A/ ∆h/B/. For
example, 〈−1, π, e〉 and 〈−3.5, π, e〉 are ∆2.5-related, as are the equivalence classes to which they
belong.

[2.4] The transformations we will be considering are continuous functions of time, conventionally
notated f(t), g(t), and so forth.8 If the value of voice i at any time is fi(t), then the transformation
is given by f(t) = 〈f1(t), . . . , fn(t)〉. The notation A → B implies that f(0) = A, f(1) = B,
and the motion from ai to bi is linear; i.e., fi(t) = (bi − ai)t + ai.9 For example, the continuous
transformation in Vers le blanc is 〈0, 9, 11〉 → 〈4, 2, 5〉. Since voice one begins at 0 and ascends four
semitones over the course of the entire piece,

f1(t) = 4t.

Similarly, since voice two begins at 9 and descends seven semitones,

f2(t) = −7t + 9.

Finally, since voice three begins at 11 and descends six semitones,

f3(t) = −6t + 11.

Having defined the function for each voice, the ordered pitch set of Vers le blanc at time t is

f(t) = 〈f1(t), f2(t), f3(t)〉. (1)

3 T -class space and regions

3.1 Ordered set space

We begin with two assumptions about the space in which these transformations take place.

Assumption 1. The space should be Euclidean.

[3.1.1] Euclidean space of n dimensions is the set Rn, where the distance between any two points
in the space, X = (x1, . . . , xn) and Y = (y1, . . . , yn), is defined as

d(X, Y ) =
√∑

(yi − xi)2. (2)

7This is a generalization of relations variously defined as P 1 in Callender 1998, P1 in Childs 1998, maximal
smoothness in Cohn 1996, P1,0 in Douthett and Steinbach 1998, and DOUTH1 in Lewin 1996.

8Intuitively, a continuous function is one that can be drawn without having to lift your pencil from the paper.
Mathematically, a transformation f(t) is continuous if, for every t0 in the domain of f , limt→t0 f(t) = f(t0) (read
the limit of f(t) as t approaches t0 equals f(t0)). If, for any ε > 0, there exists a δ > 0 such that |f(t) − c)| < ε
whenever 0 < |t − t0| < δ, then limt→t0 f(t) = c. (Weisstein) Perceptually, a transformation is continuous as long
any discontinuities are small enough to remain undetected by the listener.

9This does not necessarily imply that f(t) is defined only for t ∈ [0, 1]. For t > 1, f(t) is a continuation of the
motion from A to B. For t < 0, f(t) is a continuation of the motion from B to A.
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This metric taps into our typical notions of distance in physical space and is well suited to the
algebraic manipulations of Sections 6 and 7. An example of a common metric that is not Euclidean
is the “city-block metric:” ∑

|yi − xi| .10 (3)

Equation 3 is often used for “voice-leading distance,” where the distance between two ordered sets
is the sum of the unordered intervals traversed by each voice.11,12 (Cohn 1998, Lewin 1998, Roeder
1987, Straus 2003)

Assumption 2. If one set can be transformed into another by moving a single voice, the distance
between the two sets should be the distance this voice moves. That is, if A∆hB, then d(A,B) = h.

[3.1.2] Consider a texture of a single voice that can vary continuously in pitch. The position of this
voice in pitch space can be modeled by points on a real number line with some pitch arbitrarily
assigned to 0. If the voice moves from x to x ± h, then the distance the voice has moved is h.
Assumption 2 states that if we add any number of stationary voices to the texture, the distance
between the resulting sets will still be h. For example, if A = 〈−2, 6.5, 10〉 and B = 〈−2, 5.25, 10〉,
then the distance between A and B should be 1.25, since voice two moves from 6.5 to 5.25 while
the other voices remain the same. However, based on these two assumptions we cannot (yet) make
any claims concerning the distance between sets that differ by more than a single voice.

[3.1.3] For ordered sets of n voices the simplest way to satisfy the above assumptions is to map
each voice onto an axis in n-dimensional Euclidean space, using the Cartesian coordinate system.
It is easy enough to verify that Assumption 2 is satisfied. Moreover, we can measure the distance
between any two sets of an equal number of voices using equation 2. For n = 3 the distance between
A and B is

d(A,B) =
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2).13 (4)

[3.1.4] The beginning and ending sets from Vers le blanc are located at α = 〈0, 9, 11〉 and ω =
〈4, 2, 5〉, respectively. The interpolation, f , consists of a straight line connecting these two points.
The rate of change from α to ω remains constant so that t1 = 1

2 (7’30”) corresponds to the midpoint
of f , t2 = 1

9 (1’40”) corresponds to the point lying one ninth of the way from α to ω, and so forth.
Points corresponding to 12-tone equal tempered sets form a cubic lattice. We can get a sense
of the harmonic “situation” at any moment, ti, by finding those familar tempered sets that lie
nearest f(ti). For example, f(t1) = 〈2, 51

2 , 8〉 lies precisely halfway in between 〈2, 5, 8〉 and 〈2, 6, 8〉.
f(t2) = 〈4

9 , 82
9 , 103

9〉 lies within the cube whose vertices are the ordered sets such that voice one is
0 or 1, voice two is 8 or 9, and voice three is 10 or 11.

[3.1.5] However, ordered set space is of limited value. Simply transposing Vers le blanc would yield
an entirely different path in the same space. Likewise, labeling the voices differently, so that the

10Equations 2 and 3 are examples of p-norm distances, with p equal to 2 and 1, respectively. p-norm distance is

defined as dp(X, Y ) = (
P

|yi − xi|p)
1
p .

11In addition to satisfying Assumption 1, I believe equation 2 yields more intuitive results than equation 3 in
certain voice-leading situations. To take an extreme example, consider a 20-note chord. Now move each voice up or
down by 1

20
of a semitone, or 5 cents. According to equation 3 the distance between the two chords, which are barely

distinguishable, is 1—exactly the same as if a single voice had moved by a semitone. In contrast, equation 2 yields a
distance of approximately 0.22.

12Polansky 1996 offers a nice discussion of the differences between Euclidean and city-block distance.
13Mapping voices onto axes of an oblique coordinate system would yield a different distance function between

ordered sets, though Assumptions 1 and 2 would still be satisfied.
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y = v 2 - v 1

x = v 3 - v 1
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2h

h
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<a1,a2-h,a3>

<a1,a2+h,a3> <a1-h,a2,a3>

<a1+h,a2,a3>

<a1,a2,a3-h>
<a1,a2,a3>

<a1,a2,a3+h>

Figure 3: Problematic mapping of T-classes using Cartesian coordinates.

interpolation is 〈9, 0, 11〉 → 〈2, 4, 5〉, would yield a separate path. An inversion of Vers le blanc—for
example, 〈11, 2, 0〉 → 〈7, 9, 6〉 or T11I(f(t))—would be yet another path. We would like to have
a space in which transposition, permutation, and inversion of voices do not yield separate paths.
In short, we would like a space that allows transpositional, permutational, inversional, and even
modular (octave) equivalence to be taken into account.

3.2 Transpositional equivalence and T -class space

[3.2.1] We begin by factoring out transposition. The class representative of /A/T is taken to be
〈0, a2 − a1, . . . , an − a1〉, which we will abbreviate as 〈a2 − a1, . . . , an − a1〉T .14 In the case of three
voices, the class representative is 〈a2 − a1, a3 − a1〉T . Since three voices have been reduced to two
intervals, we can use a two-dimensional space for T -classes of three-voice sets. First, it is necessary
to update Assumption 2 for distances between T -classes, designated as ρ instead of d.

Assumption 2a. If a member of one T -class can be transformed into a member of another T -class
by moving a single voice, the distance between the two T -classes should be the distance this voice
moves. That is, if /A/T ∆h/B/T , then ρ(A,B) = h.15

For example, the distance between /〈2, 6, 10〉/T and /〈1, 4, 9〉/T should be 1, since 〈0, 4, 8〉 ∈
/〈2, 6, 10〉/T can be transformed into 〈0, 3, 8〉 ∈ /〈1, 4, 9〉/T by moving voice two a distance of
one semitone.

[3.2.2] A simple way to map T -classes onto the Euclidean plane is to set x = v3−v1 and y = v2−v1,
where x and y are the standard orthogonal axes. However, this mapping runs afoul of Assumption
2a. Figure 3 plots the set A = 〈a1, a2, a3〉 and the six sets to which A is ∆h-related. Moving either
voice two or voice three by ±h yields a distance of h between A and 〈a1, a2, a3±h〉 or 〈a1, a2±h, a3〉.
However, moving voice one by ±h yields a distance of

√
2h from A to 〈a1 ± h, a2, a3〉.

14The class representative of /A/T is the same for all members of the class, since for A′ = 〈a1 + x, . . . , an + x〉,
〈(a2 + x) − (a1 + x), . . . , (an + x) − (a1 + x)〉T = 〈a2 − a1, . . . , an − a1〉T .

15The arguments for the function ρ are the T -classes /A/T and /B/T . Since ρ is not defined on the sets A and B,
we can use the shorthand ρ(A, B) for the more explicit but cumbersome notation ρ(/A/T , /B/T ).
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<a1,a2+h,a3> <a1-h,a2,a3>
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<a1,a2,a3>

<a1,a2,a3+h>

Figure 4: Mapping of T -classes using oblique coordinates.

[3.2.3] We can correct this situation by using an oblique coordinate system in which the axes, x′ and
y′, are in a 120◦ relation rather than 90◦. (The axes in this oblique coordinate system are labeled x′

and y′ to avoid confusion with the orthogonal axes x and y.) We now set x′ = v3−v1 and y′ = v2−v1.
Figure 4 plots the sets from Figure 3 in this oblique coordinate system. The distance between A and
each of the other sets is h. Since this holds for any value of h, Assumption 2a is satisfied. In order
to use the standard Euclidean metric (equation 2) to measure the distance between T -classes, it is
necessary to map this oblique system onto the normal Cartesian system with orthogonal axes. Any
location in the oblique system, (x′, y′), will be located at (x′ − 1

2y′,
√

3
2 y′) in the Cartesian system.

Thus, in the Cartesian system T -classes are located at
(
v3 − v1 − 1

2 (v2 − v1) ,
√

3
2 (v2 − v1)

)
. The

distance between T -classes /A/T and /B/T is

ρ(A,B) =

√√√√(b3 − a3 −
1
2

((b2 − a2) + (b1 − a1))
)2

+

(√
3

2
((b2 − a2)− (b1 − a1))

)2

. (5)

By expanding and recombining terms, we can rewrite equation 5 as

ρ(A,B) =

√√√√√√3
2

 3∑
i=1

(bi − ai)2 −

(∑3
i=1(bi − ai)

)2

3

, (6)

which anticipates the form of the general equation for n voices derived in Section 7.16 The space
defined by this mapping and distance function will be refered to as the “T -class space” for ordered
sets of three voices.

16If A ∆hB, then ρ(A, B) =

r
3
2

“
h2 − h2

3

”
= h, satisfying Assumption 2a.
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Figure 5: Permutation regions of T -class space.

3.3 Permutational equivalence and the normal region

[3.3.1] There are a total of six permutations of voices for any trichord, 〈a, b, c〉, namely 〈a, b, c〉,
〈a, c, b〉, 〈b, a, c〉, 〈b, c, a〉, 〈c, a, b〉, and 〈c, b, a〉. Figure 5 shows the location in T -class space of
the six permutations of α: αabc = 〈0, 9, 11〉, αacb = 〈0, 11, 9〉, αbac = 〈9, 0, 11〉, αbca = 〈9, 11, 0〉,
αcab = 〈11, 0, 9〉, and αcba = 〈11, 9, 0〉. Each permutation lies in one of six regions of T -class space
bounded by the lines v1 = v2, v2 = v3, and v1 = v3. Each region consists of all sets satisfying one of
the following inequalities: v1 ≤ v2 ≤ v3, v1 ≤ v3 ≤ v2, v2 ≤ v1 ≤ v3, v2 ≤ v3 ≤ v1, v3 ≤ v1 ≤ v2, or
v3 ≤ v2 ≤ v1. We will take the region defined by the inequality v1 ≤ v2 ≤ v3 to be the representative
permutational region, or the normal region, shaded in Figure 5. Every point in T -class space is

[3.3.2] The lines bounding the permutational regions act as mirrors in T -class space. That is, points
related by reflection about one of these lines are also related by some permutation. For example
αabc and αbac are related by reflection about the line v1 = v2 and the permutation that exchanges
the order position of voices one and two. Reflection about the line vi = vj is equivalent to the
permutation that exchanges the order position of voices i and j.

3.4 Inversional equivalence and the normal half region

[3.4.1] Figure 6 plots the location of α, ω, I(α) (the inversion of α about 0), and I(ω) in the normal
region. (By the location of A in the normal region, we will intend the location of A′ in T -class
space, where A′ is the permutation of A such that a′1 ≤ a′2 ≤ a′3.) The normal region can be divided
in half by the line v3 − v2 = v2 − v1. What is the musical significance of this line? Any trichord in
pitch space is inversionally invariant (I-invariant) under some TxI if the ordered interval from the
bottom to the middle voice is the same as the ordered interval from the middle to the top voice.
Thus all three-voice sets in the normal region that are I-invariant lie on the line v3 − v2 = v2 − v1.
As can be readily observed in Figure 6, α and ω are congruent to their inversions through reflection
about this line.
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v 3 - v 2= v 2 - v 1

I(a)

I(w)

w

a

v 1= v2 

v 2= v3 

Figure 6: Location of α, ω, I(α), and I(ω) in the normal region of T -class space.

v 3 - v 1= v 1 - v 2

v 2 - v 3= v 3 - v 1

v 3 - v 2= v 2 - v 1

v 1= v2 

v 1= v3 v 2= v3 

Figure 7: Half regions in T -class space.

[3.4.2] Each permutational region is bisected into two half regions by a line corresponding to I-
invariant sets as shown in Figure 7. (In Figure 7 boundaries of permutational regions are shown in
black, while the bisecting lines are shown in green.) The normal and southwest regions are bisected
by v3−v2 = v2−v1, v2−v3 = v3−v1 bisects the north and south regions, and v3−v1 = v1−v2 bisects
the southeast and northwest regions. These lines also act as mirrors in T -class space for three-voice
sets—points opposite these lines are related by inversion. The lower half region (east northeast)
of the normal region contains all sets satisfying the inequality v3 − v2 ≥ v2 − v1 (in addition to
the inequalities defining the normal region), while the upper half region (north northeast) contains
all sets satisfying v3 − v2 ≤ v2 − v1. We will take the lower half region to be the representative
inversional region, or the normal half region, shaded in Figure 7. Every point in T -class space is
congruent to some point in the normal half region under permutational and inversional equivalence,
and no two points within the normal half region are congruent.

3.5 Modular equivalence and the fundamental region

[3.5.1] The last equivalence to consider is modular (or octave) equivalence. Some might wonder
if invoking octave equivalence is helpful in understanding continuous transformations like Vers le

9



<0,12>T

<12,12>T<12,0>T

<0,-12>T

<-12,-12>T <-12,0>T

<0,0>T

Figure 8: Points congruent to the origin mod 12 in T -class space.

blanc. After all, it would seem that a gradual change of octave is not possible. While the objection
is certainly reasonable, there are several reasons for taking this last step:

1) Consider a variation of Vers le blanc in which the bottom voice is raised by an octave;
i.e., 〈12, 9, 11〉 → 〈16, 2, 5〉. There are noticable differences from the original including
the lack of a convergence on a unison and motion from a relatively close spacing in pitch
space to a relatively open spacing, which is the opposite of Vers le blanc. However, the
convergence on an octave instead of a unison is still a very salient event, the relative
motion among the voices remains the same, and the resulting harmonic trajectory is
similar enough to warrant investigating how these two versions of Vers le blanc compare.

2) If the motion is continuous (or at least nearly so) and the rate of change is slow, a
gradual change of pitch class can be heard as continuously evolving despite the lack of
a consistent register. Example 2 provides a demonstration. The example is a gradual
change in pitch class with random changes of octave at periodic time intervals.

3) It is possible to change the perceived octave of a pitch gradually by making use of
Shepard tones. These are auditory illusions first created by Roger Shepard in which a
continuously descending glissando does not descend in register. (Shepard 1964) (The
same illusion is possible for ascending glissandos.) The trick is that as the perceived
pitch descends it gradually decreases in volume while the pitch an octave above gradually
increases in volume. (Typically, multiple contiguous octaves of the pc are used in order
to smooth out the transition.) If executed properly, the perceived pitch rises to the upper
octave without the listener being able to identify when the switch occurs.17 Listen to
Example 3 [modem] [broadband] to hear this illusion.18

[3.5.2] In asserting modular equivalence, we state that for P = 〈p1 . . . , pn〉 and P ′ = 〈p1 +
c1m, . . . , pn + cnm〉, where m is a real number and ci is an integer, P ′ is congruent to P mod m.
Figure 8 shows a portion of T -class space and those points that are equivalent to the origin, 〈0, 0〉T ,

17Jean-Claude Risset has explored this illusion in numerous works and has extended it so that the register of a
gradually descending pitch ascends or vice-versa.

18Example 3 is available on the internet at http://www.crowncity.net/ratcave/Audio/Shepard Tones.mp3. Similar
demonstrations are available at http://asa.aip.org/demo27.html, which is maintained by the Acoustical Society of
America.

10

http://www.crowncity.net/ratcave/Audio/Shepard_Tones.mp3
http://asa.aip.org/demo27.html
http://www.societymusictheory.org/mto/issues/mto.04.10.3/callender_ex3.ram
http://www.societymusictheory.org/mto/issues/mto.04.10.3/callender_ex3_isdn.ram
http://www.societymusictheory.org/mto/issues/mto.04.10.3/callender_ex2.mid


Figure 9: T -class space tiled by the fundamental region.

with m = 12. Each of these points can be viewed as a translation of the origin. For instance, we
reach 〈0, 12〉T by moving 12 units along the x′-axis. Since 〈0, 0〉T and 〈0, 12〉T are equivalent, the
boundaries of the half regions that intersect at the origin are equivalent to their translation 12 units
along the x′-axis, where they intersect at 〈0, 12〉T . For example, the line v2 = v3 is congruent to
the line v2 = v3−12. Figure 9 shows the same portion of T -class space with half region boundaries
translated to intersect at those points that are equivalent to the origin. These lines carve T -class
space into equivalent triangular regions that are some combination of translation and/or rotation
and/or reflection of the shaded region. (This is the triangular region that lies in the normal half
region and contains the origin.) The infinite plane of T -class space is tiled by this region without
overlaps or gaps. Thus, this region is the fundamental region.19 The fundamental region contains
all possible trichordal set classes—that is, every ordered set of three real numbers is equivalent
to some point in the fundamental region under transpositional, permutational, inversional, and
modular equivalence—and no two points in the fundamental region belong to the same set class.
We will use the symbol Π3 to refer to the fundamental region of T -class space for three-voice sets.

[3.5.3] Figure 10 plots the twelve familiar trichordal set classes, as well as the seven multiset classes
along the x′-axis, of 12-tone equal temperament in the fundamental region.20 The upper and lower
boundaries of Π3 have already been discussed. The right boundary, v2 + 12 − v3 = v3 − v1 or
v1 + v2 + 12 = 2v3, is a translation of the vertical line bisecting the north and sorth permutational
regions corresponding to the I-invariant sets in those regions. Since this boundary is a translation
of a line of I-invariance, points opposite this line are equivalent under pc inversion.

[3.5.4] Distances between points in Π3 represent the minimal distance between members of the
respective set classes. For instance, the distance between 〈2, 5〉T ([0,2,5]) and 〈3, 7〉T ([0,3,7]) is√

3 ≈ 1.73. There are no two members of [0, 2, 5] and [0, 3, 7] that are closer than
√

3 in T -class
space. We can define ρ for set classes as

ρ(/A/, /B/) = min
(
ρ(A′, B′)

)
, (7)

for all A′ ∈ /A/ and B′ ∈ /B/.
19See Coxeter 1973, pp. 63, 76-87, for a definition and discussion of fundamental regions.
20Multisets are unordered sets in which multiple occurrences of an element are counted separately. For example,

〈a, b, a〉 is an ordering of the multiset {a, a, b}, which is not the same as {a, b}.
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v 1 + v 2 + 12= 2v 3

v 3 - v 2= v 2 - v 1

v 1= v2 

[037][036]

[027][026]

[016]

[025]

[015]

[024]

[014][012]

[005][004][003][002]

[048]

[006][000]

[013]

[001]

Figure 10: Trichord set-classes in 12-tone equal temperament in the fundamental region.

3.6 Comparison with Roeder 1987

[3.6.1] The construction of T -class space and its various regions is very similar to the geometric
approach in Roeder 1987, and a brief comparison of the two is in order.21 Roeder constructs an
“ordered interval space” (OI-space) for ordered pcsets, where the trichord A is located in a 12 x
12 region of the Cartesian plane at (a2 − a1, a3 − a2), and the arithmetic is mod 12. (The model is
extendable to higher dimensions for pcsets of greater cardinality.) Since it is limited to pcsets where
the pitch classes are integers, OI-space for trichords is a toroidal lattice. Roeder provides algebraic
and geometric descriptions of pcset inclusion, exclusion, and inversion, and divides ordered interval
space into regions of permutational and inversional equivalence. (These equations can be translated
into corresponding equations for T -class space.) These regions contain members of each TnI-type
without redundancy, similar to Π3.22

[3.6.2] There are several differences between OI-space and T -class space: 1) the latter is Euclidean
(modular equivalence carves T -class space into regions as opposed to being assumed in toroidal OI-
space); 2) the latter is continuous (though, since Roeder’s space is generalizable to any modulus,
m, it can be made continuous by allowing m to approach infinity); and 3) the axes in T -class space
are oblique rather than orthogonal. The first difference allows the use of the Euclidean metric. The
third difference accounts for the fact that Roeder’s TnI regions are not congruent, in contrast with
Π3, which is a fundamental region. (Skewing OI-space by placing the axes in a 60◦ relation yields
the same triangular regions as in T -class space.)

[3.6.3] The biggest difference between the two spaces for the purposes of this paper is that distance
in T -class space measures how far the voices move, whereas OI-space measures how much the

21My thanks to Robert Morris for initially pointing out the similarities and directing me to Roeder’s work.
22There are numerous other details that the interested reader is encouraged to study in both Roeder 1987 and

1984.
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y' = v2 - v1

x' = v3 - v1

T-class spaceOI-space

y' = v2 - v1

x' = v3 - v1

<1,5,10><1,5,10>y = v3 - v2

x = v2 - v1

(4,5)

Figure 11: Semitonal voice-leading regions in OI and T-class space.

intervals change. Certainly, there is a strong relation between the two, but they are not identical.
The distance between two three-voice sets A and B in T -class space is given by equation 6. In OI-
space the distance between A and B is the “absolute sum of the differences, considered as interval
classes, of the intervals” of each voice in A and B respectively. If A = 〈1, 5, 10〉 and B = 〈1, 6, 10〉,
the distance between them in T -class space is 1, since a single voice moves a distance of 1. In OI-
space the distance is two, because the ordered interval series changes from 〈〈4, 5〉〉 to 〈〈5, 4〉〉, using
double brackets to distinguish ordered interval series from ordered sets. Depending on the analytical
focus, either space may be more suitable than the other. For another example that demonstrates
these differences, consider two ordered sets of three voices, Q and R, where each voice moves at
most a distance of 1: |ri− qi| ≤ 1. For Q = A, the region satisfying these inequalities in OI-space is
the region on the left side of Figure 11. (See Roeder 1987, Example 15) In T -class space the same
system of inequalities leads to the hexagonal region in the center of the figure. Generalizing the
situation, the same equal-tempered sets are contained in the circular region on the right, where Q
is the center and the radius is two. This is the region of all sets, R, such that ρ(Q,R) ≤ 2. (Similar
regions obtain for analogous situations in higher dimensions.)

4 Saariaho, Vers le blanc

[4.1] Figure 12 shows the path taken by Vers le blanc in T -class space. T -classes of 12-tone equal
tempered sets that lie near this path are included in Figure 12 as reference points. As discussed
previously, one advantage of plotting f in T -class space versus the ordered set space of Section 3.1
is that all transpositions of Vers le blanc result in the same path. Since sets of integers form a
cubic lattice in ordered set space and a triangular lattice in T -class space, another advantage is that
the number of neighboring 12-tone equal tempered reference points is reduced from eight to three.
For instance, f(1

9) lies in the shaded triangle whose vertices are the T -classes 〈8, 10〉T , 〈7, 9〉T , and
〈7, 10〉T . Additionally, the convergence of voices one and two on a unison is explicitly represented
by the intersection of f and the x′-axis (where y′ = v2 − v1 = 0).

[4.2] A few cautionary notes are in order. Not only do constant transpositions of f trace the same
path in T -class space, but variable transpositions in which the contour of the voices is distorted also
trace the same path. For instance, consider a variation of Vers le blanc in which α is untransposed
but ω is transposed by 30 semitones—i.e., 〈0, 9, 11〉 → 〈34, 32, 35〉. We could call this variation

13
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1
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/a/T=<9,11>T

<1,3>T

<2,4>T

<4,6>T

<5,7>T

<-1,1>T

<0,2>T

<3,6>T

<6,8>T

<7,9>T

<8,10>T

/w/T=<-2,1>T

<-1,2>T

<0,3>T

<1,4>T

<2,5>T

<3,5>T

<4,7>T

<5,8>T

<6,9>T

<7,10>T

<8,11>T

x' = v 3 - v 1

y' = v 2 - v 1

Figure 12: Trajectory of Vers le blanc in T -class space.

T30t(f). Given the fast rate of change (relative to the original) and uniform direction of all voices,
T30t(f) would seem to be fairly different from f , yet it traces the same path in T -class space. For a
more drastic variation, consider a transposition of f that changes randomly and abruptly every 200
milliseconds. Since transposition has been factored out, this more drastic variation also traces the
same path in T -class space. The path in Figure 12 thus represents a family of interpolations that
move linearly from /α/T to /ω/T , Vers le blanc being just one member of this family. Nonetheless,
as long as we remember the specifics of a given continuous transformation, we can take advantage
of the perspectives offered by Figure 12 and the next few figures.23

[4.3] Figure 13 shows the six possible paths that Vers le blanc can take depending on how we order
the voices. fabc extends from αabc to ωabc (= 〈4, 2, 5〉), fbac extends from αbac to ωbac, and so forth.
It is easy to see in Figure 13 that fabc is congruent to fbac through reflection about the line v1 = v2.
fabc is also congruent to facb through reflection about the line v2 = v3 and fcba through reflection
about the line v1 = v3. fabc begins in the normal region and moves out of this region as it crosses
the boundary v1 = v2. Likewise, fbac begins out of the normal region and moves into this region as
it crosses v1 = v2, intersecting this line at the same point at which it intersects fabc. Limiting our
perspective to just the normal region, we can trace the path of Vers le blanc by taking only the
portion of fabc and fbac lying in the normal region, shown as a blue line in Figure 13. The voice
crossing in Vers le blanc is now shown by the reflection of f off of the boundary v1 = v2. The
perceptual effect of this and other reflections will be discussed in greater detail below.

[4.4] In Figure 14 the portion of the blue line in Figure 13 that lies outside of the normal half region
23The tradeoffs between abstract categories and specific instances of these categories are of course very familiar.

In particular, the present discussion is closely related to graphs of minimal voice leading between trichordal and
tetrachordal set-classes in Cohn 2003 and Straus 2003. These graphs represent the potential for minimal voice-
leading between members of connected set classes. Likewise, points that lie within an arbitrarily small neighborhood
in T -class space represent the potential for infinitesimal transformations connecting members of the respective T -
classes.
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v 1= v3 
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Figure 13: Permutations of Vers le blanc and its trajectory through the normal region.

is shown in grey. Reflecting these grey segments about the line of I-invariant pitch sets yields the
path of Vers le blanc in the normal half region, shown in blue. Beginning at α on the far right, the
path moves to the left, toward the line of I-invariance. Reflecting off of this boundary, it moves
toward the permutation boundary and reflects back toward the inversion boundary. Reflecting for
a second time off of the inversion boundary, Vers le blanc moves to its conclusion at ω.

[4.5] Similarly, the portion of Figure 14 that lies outside of the fundamental region is the grey
segment on the right side of Figure 15, AB. Reflecting this segment about the right boundary of
Π3 yields the segment BD. A portion of this reflected segmented also lies outside of Π3. Reflecting
CD about the upper boundary yields Cω and completes the path of Vers le blanc in the fundamental
region. This is the graph of the set-class of f , or /f/.

[4.6] What does this tell us about the large-scale organization of the piece? The composer suggests
that as the harmony resulting from the multiple glissandos approaches a more traditional sonority,
listeners tend to notice that the harmonic situation has changed. (Saariaho 1987) So we can get
a better sense of the harmonic trajectory by inspecting its relation to set classes in 12-tone equal
temperament, which serve as cognitive reference points.24 (See Figure 16.) Beginning with [013],
f initially moves toward [024]. It then moves in the direction of [025], [026], and [027] and back
again, with increasing distance from these familiar sonorities. The next section consists of a motion
to a dyad somewhat less than a minor third, followed by a final motion toward, away from, and
then to its starting point, [013].25 It is important to remember that ricochets in the graph of f do

24This is another strong motivation for invoking modular (octave) equivalence for a continuous transformation in
pitch space—limiting the number of reference points to the usual 12 trichordal set classes (and 7 multiset classes)
instead of the infinite reference points in an unbounded region.

25In personal correspondence, Dmitri Tymoczko has raised interesting questions about the conditions under which
a linear interpolation will cross an equal-tempered set class. For an interpolation, A → B, suppose that A is an
equal-tempered T -class; i.e. (ai − a1) ∈ Z. If there exists a c such that bi−ai

c
∈ Z, where the greatest common factor

of bi−ai
c

for all i is 1, then for all t′ = k
c
, k ∈ Z, f(t′) is an equal-tempered T -class; (fi(t

′) − f1(t
′)) ∈ Z. Otherwise,
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Figure 14: Trajectory of Vers le blanc through the normal half region.

BCD A
v 2 = v3 

v 1 + v2 + 12 = 2v 3a/w

v 3- v2 = v2 - v1

v 1 = v2 

Figure 15: Trajectory of Vers le blanc through the fundamental region.

not represent sharp changes in the harmonic interpolation. They are, rather, gradual convergences
with the boundaries of Π3.

[4.7] The perceptual effect of these convergences differs depending on the boundary involved. (Fig-
ure 17 highlights three segments of f and labels 12 time points, t0 through t11, including every
reflection against a boundary of Π3. The table beneath the figure lists each timepoint and its
corresponding set class and timings in Vers le blanc and the simulation in Example 1 [modem]
[broadband].) The reflection at t8 is clearly audible as the moment when voices one and two con-
verge on a unison. The moments when f converges on the other boundaries are not as salient, since
it is difficult to hear the precise moment when f becomes an I-invariant set. However, one can
hear these reflections indirectly, especially those occuring at t3 and t10, where f retraces nearly the
same path in Π3. The passage of Vers le blanc from t2 to t4 remains in a small region of Π3 where

the set classes are highly similar. The distance between f(t2) and f(t4) is only ρ =
√

1
147 ≈ 0.082.

For the passage between t9 and t11, the situtation is identical. (This is due to the fact that f
“strikes” both boundaries at the same angle of incidence.) Compare these passages with an equal
stretch of time from t6 to t7, but with no intervening reflection. The distance from f(t6) to f(t7)

there are no values of t 6= 0 such that f(t) is an equal-tempered T -class.
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v 1 + v 2 + 12= 2v 3

a/w

v 3 - v 2= v 2 - v 1
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[024]
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[048]

[006][000]

[013]

[001]

Figure 16: /f/ with 12-tone equal tempered set classes as reference points.

is ρ =
√

148
147 ≈ 1.003. This is, of course, an immediate consequence of the fact that the boundaries

act as mirrors. The closer the angle of incidence formed by f and the boundary is to 90◦, the more
pronounced the effect is.

[4.8] In considering the relation of f to familiar reference points from 12-tone equal temperament,
it is useful to note that some set classes have a greater cognitive pull than others.26 For example,
f does not need to be as close to [037] in order to make the association as it does to [036]. To
find the point at which f is closest to [037] (or some other consonant-triad-like sonority), we draw
a perpendicular from the set class to f . (Figure 18) The distance from f to [037] is minimized at
t = 16

37 ≈ 6’25” (≈ 1’05” through the simulation in Example 1). Prior to [037], f is closest to [027]
when t = 14

37 ≈ 5’51” (≈ 57” into Example 1). Very gradual voice leading from [027] to [037] has
the potential, exploited in Vers le blanc, to sound like a 4-3 suspension. (The potential is realized
here since the second chord is a major triad and the rate of change for each voice, particularly the
bass, is very slow.) The aural experience is somewhat akin to a distorted rendering of a V4−3 in
a major key. Of course, I would not want to take the analogy too far, but the gradual emergence
and submergence of a motion even vaguely similar to tonal voice leading is likely to be latched on
to by a listener at sea in very unfamiliar aural waters.

[4.9] Other reference points are suggested by the convergence of one of the intervals with pure thirds,
fourths, and fifths. These convergences are marked by interference beats before and after the pure
interval, itself marked by the complete cessation of beats. By fixing two pitches in an interval class
of a pure fourth/fifth or pure major third and allowing the third pitch to vary independently, two
closed loops are formed in Π3. (In Figure 19, green lines indicate sets containing a pure major third
and red lines indicate sets containing a pure fourth/fifth.) Each loop corresponds to all possible
trichords containing the respective pure intervals. Intersections between f and the two loops occur
with regularity over the opening three-fourths of the piece, as summarized in Figure 19, including

26This line of thinking was sparked by a comment from Nancy Rogers.
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[016]
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t6

t7

t8

t9

t10

t0/t11

a/w

v 3 - v2= v2 - v1

v 1= v2 

ti /f(ti)/ time in Vers le blanc time in simulation

t0 [0, 1, 3] 0’ ≈ 0’

t1
[
0, 21

9 , 42
9

]
1
9 ≈ 1’55” ≈ 12”

t2
[
0, 21

3 , 62
3

]
7
21 = 5’ 50”

t3
[
0, 417

21 , 7 4
21

]
8
21 ≈ 5’43” ≈ 57”

t4
[
0, 23

7 , 65
7

]
9
21 ≈ 6’26” ≈ 1’04”

t5
[
0, 2 7

12 , 51
6

]
7
12 ≈ 8’45” ≈ 1’27”

t6
[
0, 12

3 , 41
3

]
14
21 = 10’ 1’40”

t7
[
0, 13

21 , 3 8
21

]
16
21 ≈ 11’26” ≈ 1’54”

t8
[
0, 0, 2 9

11

]
9
11 ≈ 13’34” ≈ 2’3”

t9
[
0, 20

21 , 219
21

]
19
21 ≈ 13’34” ≈ 2’16”

t10

[
0, 110

21 , 220
21

]
20
21 ≈ 14’17” ≈ 2’23”

t11 [0, 1, 3] 15’ 2’30”

Figure 17: Reflections of f off of the boundaries of Π3.

v 1 + v 2 + 12= 2v 3

t = 16/37

t = 14/37

[037]

[027][026]

Figure 18: V 4−3 in Vers le blanc.
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Figure 19: Intersection of f with pure 4ths/5ths and pure major 3rds.

the pure fourth and pure fifth in rapid succession near the vertical boundary. (This is another
consequence of the effect discussed in [4.7].) Pure harmonic intervals are noticeably lacking in the
closing fourth of the piece.

[4.10] We can also characterize the space in terms of relative evenness and unevenness of set classes.
(Clough and Douthett 1991) Points in the space that lie closer to maximally even sets, [048] for
trichords, represent set classes with a more even distribution of pitch classes than points that lie
farther away.27 For example, [037] is closer to [048] than [025], and is thus more even. The harmonic
progression of Vers le blanc is a large-scale motion toward and then away from greater evenness.

[4.11] Finally, the intersection of f with the x′-axis is a very prominent formal event, occurring
9
11 or 12’16” into the piece. The moments just before and after the convergence with a flat minor
third contain the highest degree of dissonance in the entire piece. Indeed, associating tension with
dissonance, Vers le blanc is weighted heavily toward the end, with the highest levels of tension
coming in the final third of the work. This yields a dramatic profile not easily intuited from the
information provided in Figure 1.

5 Nancarrow, Study No. 22

[5.1] For an example of how these ideas apply to continuous transformations in a domain other
than pitch, we turn to an acceleration canon from the player-piano works of Conlon Nancarrow.
The opening section of Study No. 22 is a canon in three voices in which each voice accelerates at a
different rate. The specifics of this acceleration, taken from Gann 1995, are summarized in figure
20. The lowest voice enters first, beginning at a tempo of approximately 45 beats per minute, and
accelerates at a rate of 1% to a tempo of approximately 116 beats per minute. The highest voice
enters approximately 14 seconds later at approximately 45 beats per minute, but accelerates at a

27For another approach to determining the relative evenness of a set class see Bloch and Douthett 1994.
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lowest voice: M.M. ≈ 45 to 116 (acceleration = 1%)
highest voice: M.M. ≈ 45 to 185 (acceleration = 1.5%)
middle voice: M.M. ≈ 45 to 373 (acceleration = 2.25%)

Figure 20: Accelerations in the opening of Nancarrow’s Study No. 22.

rate of 1.5% to a final tempo of approximately 185 beats per minute. The final voice to enter, the
middle voice, begins about 29 seconds after the highest voice and accelerates from approximately
45 to almost 373 beats per minute at a rate of 2.25%.28 The entrances of each voice are timed such
that the final note of the canon line is attacked simultaneously in all voices approximately 1.37
minutes or 82 seconds into the piece.

[5.2] While the information in figure 20 provides us with a starting point in understanding the
passage, it does not show the tempo relationships between the voices and how these relationships
change over time. Figure 21, which graphs the acceleration of each voice over time, is an improve-
ment. With this graph we can note certain prominent tempo relationships between the voices, such
as various moments when tempos are equivalent and which voices are the fastest or slowest at any
moment. But we are still lacking a detailed representation of how these accelerandos interact.

[5.3] It would be nice if we could use the T -class space already constructed for Vers le blanc, but
there are important obstacles. The primary problem is that intervals between pitches are measured
by their differences while intervals between tempos are measured by their ratios. This leads to
numerous differences between pitch and tempo spaces. For instance, the sets 〈3, 4, 5〉 and 〈4, 5, 6〉
are equivalent (under transposition) as pitch sets, but not as tempo sets. The sets 〈3, 4, 5〉 and
〈6, 8, 10〉 are equivalent as tempo sets—the second is twice as fast as the first—but not as pitch
sets. However, the problem lies in the default level of description for pitch and tempo. If we
normally described pitch in terms of frequency, our notion of interval would carry over naturally
from one domain to the other.

[5.4] To make this more clear, let’s consider a dyad expressed as the frequencies f1 and f2 measured
in beats per second (Hertz). The interval between the two frequencies is given by the ratio f2

f1
. We

wish to convert this frequency ratio to a pitch interval. Setting f1 = 2
v1
c and f2 = 2

v2
c , where c is

the number of equal divisions of the octave, the interval is

f2

f1
=

2
v2
c

2
v1
c

= 2
v2−v1

c . (8)

28Gann refers to this type of acceleration as a geometric acceleration. For an acceleration of x%, each duration is
1 + x

100
as long as the following duration. Expressing this acceleration as a continuous function with respect to time

we have

f(t) = − (r − 1)2

(d + (c − t)(r − 1))2 ln r
,

where d is the initial duration, r =
`
1 + x

100

´−1
, c is the time at which the acceleration begins, t is measured in

minutes, and f(t) yields the number of elapsed beats at time t. The corresponding tempo function, used for the
graphs in Figure 21, is

d
dt

f(t) =
(r − 1)

(d + (c − t)(r − 1)) ln r
.

For all three voices in this example the initial duration is 1
45

minutes or 1 1
3

seconds. For more on this type of
acceleration and the derivation of these functions, see Callender 2001.
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Figure 21: Tempo graph for opening of Nancarrow’s Study No. 22.

Solving for v2 − v1 we have

v2 − v1 = c log2

f2

f1
, (9)

which, for c = 12, gives the directed pitch interval of the dyad in terms of semitones.

[5.5] For example, let Af = 〈f1, f2, f3〉 be an ordered set of frequencies (measured in Hertz) with
f1:f2:f3 = 3:4:5. Af is a just-intonation triad in six-four position. Let i1 be the directed pitch
interval from f1 to f2 and i2 be the directed pitch interval from f1 to f3. We can then plot Af in
T -class space with x′ = i2 and y′ = i1. According to equation 9, i1 = 12 log2

4
3 ≈ 4.98 semitones

and i2 = 12 log2
5
3 ≈ 8.84 semitones. If A = 〈a1, a2, a3〉 is the set of pitches corresponding to f1,

f2, and f3, then Af and A are located at the same point in T -class space. Scaling a frequency set
by a constant is the equivalent of transposing a pitch set: zAf = 〈zf1, zf2, zf3〉 = Tc log2 z(A). The

scalar class of Af is
{

A′
f | A′

f = zAf , z ∈ R
}

. We will write the scalar class of Af as 〈f1:f2:f3〉.
The isomorphism between T -classes and scalar classes is

〈f1:f2:f3〉 = /〈0, c log2
f2

f1
, c log2

f3

f1
〉/T , and

/〈a1, a2, a3〉/T = 〈2
a1
c :2

a2
c :2

a3
c 〉. (10)

Thus we can write 〈3:4:5〉 = /〈0, 12 log2
4
3 , 12 log2

5
3〉/T . (Hereafter, we will refer to scalar classes as

T -classes.)

[5.6] Suppose the frequencies in the above example were not measured in Hertz but in beats per
minute. Then f1, f2, and f3 will be perceived as tempos (assuming their values fall within the
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Figure 22: Tempo sets plotted in T -class space.

appropriate range). However, with respect to T -class space the absolute values of f1, f2, and f3 are
irrelevant. What matters is that their ratios are identical. Thus Af is located at the same point
in T -class space regardless of whether its elements are perceived as pitches or tempos.29 (This
assumes that c = 12. In fact, it is more intuitive to set c = 1 for tempos, using the “octave” or
1:2 ratio as the basic unit.) Figure 22 plots tempo sets with the ratios 〈3:4:5〉, 〈3:5:7〉, 〈4:6:9〉,
〈12:15:20〉, and 〈15:21:35〉 in T -class space.30 The green, red, and blue lines correspond to various
ratios. The green lines represent the ratio between voices 1 and 2 and are parallel to the x′-axis,
itself corresponding to the ratio 1:1. Red lines represent the ratio between voices 1 and 3 and are
parallel to the y′-axis, also corresponding to the ratio 1:1. Blue lines represent the ratio between
voices 2 and 3 and are parallel to the line forming a 120◦ angle with both the x′- and y′-axes.
(N.B.—A red line labeled by the ratio f1:f2 is the line x′ = log2

f2

f1
not x′ = f2

f1
. The grey line will

be discussed below.) Since we are more comfortable discussing tempos as ratios, these lines are a
more convenient reference than equal divisions of the “octave.”

[5.7] To graph the acceleration canon as a trajectory we follow the same steps as for the pitch
interpolation of Vers le blanc. Figure 23 graphs the acceleration canon in T -class space. (In Figure
23 the x′- and y′-axes are labeled as the lines v1 : v2 = 1 and v1 : v3 = 1, respectively. Also,
the figure does not take equivalence classes other than transposition into account. We will do
so shortly.) The graph begins with the entrance of the middle voice (where t = 0.484 minutes
and g(0.484) = α) when the tempo relationships are approximately 1.21:1:1.3, which is very close
to 17:14:18. (NB—17:14:18, which indicates that voice 1 is faster than voice 2, is not the same
as 14:17:18, which indicates that voice 2 is faster than voice 1.) The trajectory, designated by
the function g, curves around the origin and appears to flatten out near the conclusion (where
t = 1.372 and g(1.372) = ω).31 We can also see the tempo convergences where g crosses black lines

29Locating tempo sets in T -class space is essentially the same step taken in Lewin 1987 (chapter 4), where tempos
from a portion of Elliot Carter’s String Quartet no. 1 are represented as pitches.

30Nancarrow’s Study No. 46 contains ostinatos in 3:4:5 tempo ratios; Studies Nos. 17 and 19 are canons in 12:15:20;
Ligeti’s Piano Etude, No. 6, opens with tempo ratios 15:21:35; and 4:6:9 are the tempo ratios for the first movement
of the author’s own Clarinet Concerto.

31In general, since the accelerations are non-linear, g will not be a straight line. However, if the acceleration were
allowed to continue beyond the end of the canon, the fastest voice (voice 2) would increase at such a high rate that
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Figure 23: Tempo trajectory for the opening of Nancarrow’s Study No. 22.

corresponding to 1:1 ratios.

[5.8] As with Vers le blanc, we will proceed to consider equivalence classes relevant to the musical
situation at hand. Since the timbre of all three strata in Study No. 22 is homogenous and their
relative registers are somewhat obscured, it makes sense to assert permutational equivalence and
limit our perspective to the normal region. In other words, we want to focus on the relationships
between tempos ordered from slowest to fastest, rather than ordered by register. Figure 24 graphs
g in the normal region. Beginning with the entrance of the middle voice all tempo ratios contract
toward a convergence of the fastest two tempos, where g intersects the line v2 : v3 = 1. At the first
tempo convergence, which occurs at t ≈ 0.717 minutes (≈ 43 seconds), the ratio between the slowest
tempo and the other tempos is approximately 7:8. The second convergence occurs at t ≈ 0.887
minutes (≈ 52 seconds) when the slowest two tempos are equal, indicated by the horizontal line
v1 : v2 = 1, and form a ratio of approximately 16:17 with the faster tempo. After backtracking
nearly the same area of T -class space to the third tempo convergence at t ≈ 1.002 minutes (≈ 60
seconds)—the second convergence at v2 : v3 = 1—the tempos quickly and progressively diverge for
the remainder of the opening canon.

[5.9] The next equivalence to consider is inversion. Is there a meaningful sense in which two tempo

g would approach a straight line running parallel to the y′-axis.
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Figure 24: g in the normal region.

sets could be related by inversion? Let’s briefly review the effects of inversion on the ordered interval
series for a pitch set, limiting our focus to ordered pitch sets in the normal region. The ordered
interval series of A is 〈〈a2 − a1, a3 − a2〉〉, again using double brackets to eliminate confusion with
ordered sets. The inversion of a pitch set results in the retrograde of its ordered interval series, so
that the ordered interval series of I(A) is 〈〈a3−a2, a2−a1〉〉.32 As discussed in Section 3.4, for sets
in the normal region this results in a reflection about the line v3 − v2 = v2 − v1. Let f1, f2, and f3

be the frequencies of a1, a2, and a3. Then the ordered interval series of A can also be written as
〈〈f1:f2, f2:f3〉〉, and the ordered interval series of I(A) can be written as 〈〈f2:f3, f1:f2〉〉.

[5.10] For example, let’s return to Af , which has an ordered interval series of 〈〈3:4, 4:5〉〉. Its
inversion will yield the ordered interval series 〈〈4:5, 3:4〉〉, so the T -class of I(Af ) is permutationally
equivalent to 〈12:15:20〉. Figure 25 interprets Af and I(Af ) as tempo sets. (In figure 25, the
inversion maps the tempo of the middle voice onto itself.) The pulse of the middle voice stays
at M.M. = 60 throughout. The pulse of the bottom voice switches from M.M. = 45 in the first
system to M.M. = 48 in the second system, while the top voice switches from M.M. = 75 to M.M.
= 80. The ordered interval series, progressing from the bottom to top staff is 〈〈3:4, 4:5〉〉 in the
first system and 〈〈4:5, 3:4〉〉 in the second system. There are certainly differences between the two
systems: 1) pulses in system one coincide every four beats, whereas pulses in system two coincide
every 15 beats; and 2) each rhythmic layer in system one is likely to be heard as a division of a
longer time span (equivalent to one bar), whereas rhythmic layers in system two are likely to be
heard as multiples of shorter pulse (equivalent to a sixteenth note). But there is also a strong
similarity between the tempo sets of the two systems due to their identical interval content—both
sets contain the ratios 3:4, 4:5, and 3:5. In Figure 22 these two tempo sets are readily observed to
be related by reflection about the line of I-invariant tempo sets, v1 : v2 = v2 : v3. The I-related
pair 〈3:5:7〉 and 〈15:21:35〉 are also related by reflection about this line,33 while〈4:6:9〉 lies on the

32I(A) = 〈−a1,−a2,−a3〉, which is permutationally equivalent to 〈−a3,−a2,−a1〉. 〈〈−a2−(−a3),−a1−(−a2)〉〉 =
〈〈a3 − a2, a2 − a1〉〉.

33In the opening of Ligeti’s Piano Etude, No. 6, three different tempos are achieved by pulse streams articulated
every 3rd, 5th, or 7th sixteenth. The resulting set of tempos belongs to the T -class 〈15:21:35〉, which is the inversion of
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Figure 25: I-related tempo sets.

line of I-invariant sets.

[5.11] Modular equivalence for tempos is context dependent in a way that octave equivalence for
pitches is not. In certain contexts tempos in a 1:2 ratio could be considered equivalent. However, in
other contexts, such as compound meter, a 1:3 ratio could be considered equivalent. Since there is
no discernible meter in the opening of Study No. 22 anyway, we will not take modular equivalence
into consideration.

[5.12] Figure 26 graphs g in the normal half region, again beginning with the entrance of the
middle voice. The portions of the graph in Figure 24 that lie above the normal half region are
reflected about its upper boundary. All three tempo convergences correspond to reflections off of
the line v1 : v2 = 1. In addition, Figure 26 shows the three convergences on I-invariant tempo sets
corresponding to reflections off of the line v1 : v2 = v2 : v3. The first of these occurs at t = 0.837’
(or ≈50”), the second occurs at t = 0.931’ (or ≈56”), and the third occurs at t = 1.268 (or ≈76”).
Figure 26 shows even more clearly how the canon retraces its own path (again, due to reflections
off of the boundaries of the normal half region) prior to the divergence of tempos at the end of the
canon. Though it appears as if this divergence takes up the majority of the passage, this is not the
case. (Time is not a dimension of the graph.) In fact, only the final 2

5 of the graph in Figure 26
occurs after the third tempo convergence, with most of the canon characterized by very close tempo

the duration ratios. Conversely, pulse streams articulated every 15th, 21st, and 35th sixteenth would yield the T -class
〈3:5:7〉. (See Taylor 1997 for a detailed analysis of this Etude.)
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ratios. Even in this final 2
5 most of the divergence occurs near the very end of the canon—note

how much distance in T -class space is covered in the final six seconds.34 This sheds light on my
own perception of the canon. When tempos are close, but not equivalent, the result is a kind of
tempo dissonance, in which it is difficult to distinguish and separate the individual tempos. As the
tempos diverge and the ratios become less close, it is easier to experience the tempos as separate
polyphonic layers, particularly when they approach the simpler ratios of 2:3, 1:2, 1:3, and so forth.

6 Ligeti, Hamburgisches Konzert

[6.1] Figure 27 is an annotated score of the concluding chorale (marked Choral in the original score)
from the second movement of György Ligeti’s Hamburgisches Konzert, for solo horn, four obbligato
natural horns, and chamber orchestra. The chorale is given almost entirely to the four natural horns
(pitched in F , E, E[, and D), who are instructed to play throughout the concerto in natural tuning;
i.e., the pitch is not to be “corrected” by hand to coincide with equal temperament.35 Figure 28
gives the typical spelling of the first thirteen partials of an E1 fundamental with deviations from
12-tone equal temperament indicated in cents above the staff. For instance, the seventh partial is
approximately 31 cents below the equal tempered D4. (In Figure 27, pitches that are not octave
related to the fundamental of each horn are identified by partial number the first time they occur.)
While the chorale is obviously discrete in the pitch domain, it is necessary to use the techniques

34Allowing the canon to continue beyond 82 seconds, as t approaches 1.494 minutes (approximately 90 seconds),
g2(t) goes to infinity, so g(t) would pass through T -class space at an infinite rate.

35The score is not explicit as to the precise intervallic relationship between the fundamentals of the natural horns. In
the absence of any indications specifying particular frequency ratios, such as 19:18 for semitone-related fundamentals,
I am assuming the fundamentals belong to the same equal-tempered universe as the rest of the ensemble. This is
in keeping with Ligeti’s usual flexible approach to microtonal structures, taking advantage of “mistuned” natural
harmonics and overtones on strings and brass, employing instruments like ocarinas and slide whistles in which the
tuning is precarious, and using instructions such as “just a little bit lower (less than a quarter tone)” to achieve a
very complex non-tempered sound world, rather than erecting an alternative tuning system based on just intonation,
quarter tones, or the like.
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Figure 27: Choral from György Ligeti’s Hamburgisches Konzert, second movement
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developed for continuous transformations in the foregoing in order to answer questions about the
harmonic structure. (Example 4 is a MIDI realization of the chorale, minus the bassoon.)36

[6.2] For example, chords 1.1, 1.3, 2.1, 2.2, 3.2, 3.3, and 4.1 (reckoning chords by measure.beat)
are all fairly similar to [0158], the set class of major seventh chords. (“Fairly similar” in the sense
that if each pitch were moved to its nearest neighbor in 12-tone equal temperament, the resulting
chord would be a member of [0158].) But are some more similar than others? Chord 1.3, with a
single deviation of 14 cents from equal temperament, is likely to be heard as more similar to [0158]
than chord 2.1. But is the latter chord, with two deviations, one of 31 cents and one of 14 cents,
necessarily closer to [0158] than chord 1.1, with three deviations, two of 31 cents and one of 14
cents? For those chords that are further removed from [0158], to which other set classes are they
most similar? And does rounding each pitch of a chord to the nearest equal-tempered pitch always
yield the equal-tempered set class closest to the chord?

[6.3] To answer these questions, we need to find the 12-tone equal tempered set classes that are most
similar to each chord in the chorale. First we will find the 12-tone equal tempered T -classes that are
closest to each chord in the T -class space for ordered sets of four voices. It is possible to construct a
three-dimensional Euclidean space analogous to that developed in Section 3, determining distances
geometrically. However, we will proceed with an algebraic approach that generalizes nicely to T -
class spaces of any dimension. (As long as Assumptions 1 and 2a are satisfied, distances determined
geometrically or algebraically are identical.)37

[6.4] Let’s begin by considering the distance between chord 1.1, P = 〈−0.31, 0.69, 7.86, 5〉, and its
closest neighbor in 12-tone equal temperament, Q = 〈0, 1, 8, 5〉 (C4 = 0). The mapping of pitches
from one chord to the other, along with the corresponding distances, is

P → Q di

5 → 5 d4 = 0
7.86 → 8 d3 = 0.14
0.69 → 1 d2 = 0.31

−0.31 → 0 d1 = 0.31

36The score is notated in C. In the original score, Ligeti uses three different types of arrows to indicate the microtonal
deviations of the 5th (and 10th), 7th, and 11th harmonics. The arrow for the 13th harmonic is the same as that for the
7th harmonic, though the respective deviations are not equal. The slight deviations of the 3rd (6th and 12th) and 9th

harmonics are not indicated. Thus, the original score is only an approximation of the sounding pitches—we will use
the actual microtonal deviations (rounded to the nearest cent), as shown in Figure 28, in the analysis that follows.

37What follows is an extension of Lewin 1998, Sections 7 and 8.
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where di is the distance the ith voice moves. The total distance from P to Q is

d(P,Q) =
√

d2
1 + d2

2 + d2
3 + d2

4 ≈ 0.46. (11)

[6.5] However, since we are interested in the distance between the T -classes of P and Q, a better
fit may be found by allowing Q to vary continuously. Transposing Q by a continuous variable, x,
the mapping and corresponding distance from P to Tx(Q) is:

P → Tx(Q) di

5 → 5 + x d4 = x
7.86 → 8 + x d3 = x + 0.14
0.69 → 1 + x d2 = x + 0.31
−0.31 → x d1 = x + 0.31

The distance between P and Tx(Q) varies as a function of x:

f(x) = d(P, Tx(Q))2 = x2 + (x + 0.14)2 + 2(x + 0.31)2

= 4x2 + 1.52x + 0.2118. (12)

In order to find the value for x that minimizes f , we could simply inspect the graph of f . However,
to be precise, we will take the derivative of f(x), d

dxf(x), and solve d
dxf(x) = 0 for x:38

d
dxf(x) = 8x + 1.52 = 0

x = −1.52
8 = −0.19. (13)

In other words, we can find the best fit by transposing Q down 0.19 semitones. Substituting −0.19
for x in equation 12, the distance between P and T−0.19(Q) is

d(P, T−0.19(Q)) =
√

4 · (−0.19)2 − 1.52 · 0.19 + 0.2118 ≈ 0.26. (14)

[6.6] According to this metric, the distance between ∆h-related T -classes is
√

3
2 h rather than h, which

contradicts Assumption 2a. This seems somewhat counterintuitive and is worth a brief discussion.
Consider the two pitch sets A = 〈0, 4, 7, 11〉 and B = 〈0, 4, 7, 10〉. A and B are ∆1-related as are
/A/T and /B/T . The distance between A and B is equal to 1, but if we allow B to be transposed
continuously, we can find a closer fit. Specifically, d(A, Tx(B)) is minimized when x = 1/4, or when
B is raised by one eighth-tone. The resulting distance is d

(
A, T 1

4
(B)

)
=

√
3

2 . Since /A/T ∆1/B/T ,

ρ(A,B) should be equal to 1. Therefore it is necessary to scale d
(
A, T 1

4
(B)

)
by
(√

3
2

)−1
, so that

ρ(A,B) = d
(
A, T 1

4
(B)

)
· 2√

3
= 1.39

38For readers who may be anxious at the mention of calculus, only the most elementary techniques are needed for
our purposes. Here is a brief explanation: The graph of f(x) is a “U”-shaped curve. We wish to find the bottom of
this “U” (the point at which the distance is minimized). For any point x0 on this curve we can draw the tangent—a
straight line that touches the curve at x0 and no other point. The slope of this tangent is the derivative of f(x),
written d

dx
f(x). For a function of the form g(x) = ax2 + bx + c, the derivative is d

dx
g(x) = 2ax + b. The tangent to

the lowermost point of f(x) has a slope of 0, which is why we wish to find the point where d
dx

f(x) = 0.
39The scaling factor for n-voice textures is derived in the following section.
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Accordingly, the distance between /P/T and /Q/T is

ρ(P,Q) = d(P, T−0.19(B)) · 2√
3
≈ 0.3, (15)

or nearly one third the distance of a semitone deviation. Since Q ∈ [0158] and no other member of
[0158] is closer to P in T -class space, then by equation 7, ρ(/P/, /Q/) ≈ 0.3.

[6.7] Figure 29 gives the respective distances (ρ1, ρ2, ρ3) between the set class of each chord in the
chorale (X) and the three T -classes that are closest to it (Y1, Y2, Y3). (Horizontal lines have been
inserted at the end of each phrase. ρi = ρ(/X/, /Yi/).) We can now answer the questions posed

X /Y1/ ρ1 /Y2/ ρ2 /Y3/ ρ3

1.1 [0158] ρ ≈ 0.300 [0157] ρ ≈ 0.764 [0258] ρ ≈ 0.877
1.2 [0237] ρ ≈ 0.424 [0236] ρ ≈ 0.707 [0137] ρ ≈ 0.744
1.3 [0158] ρ ≈ 0.168 [0157] ρ ≈ 0.834 [0157] ρ ≈ 0.939
1.4 [0358] ρ ≈ 0.519 [0258] ρ ≈ 0.537 [0248] ρ ≈ 0.793
2.1 [0158] ρ ≈ 0.315 [0148] ρ ≈ 0.739 [0147] ρ ≈ 0.879
2.2 [0157] ρ ≈ 0.498 [0158] ρ ≈ 0.505 [0157] ρ ≈ 0.921
2.3 [0369] ρ ≈ 0.033 [0258] ρ ≈ 0.974 [0258] ρ ≈ 0.974
3.2 [0158] ρ ≈ 0.424 [0157] ρ ≈ 0.707 [0147] ρ ≈ 0.744
3.3 [0158] ρ ≈ 0.300 [0157] ρ ≈ 0.764 [0258] ρ ≈ 0.877
3.4 [0268] ρ ≈ 0.154 [0157] ρ ≈ 0.847 [0258] ρ ≈ 0.951
4.1 [0158] ρ ≈ 0.317 [0157] ρ ≈ 0.849 [0268] ρ ≈ 0.883
4.2 [0358] ρ ≈ 0.334 [0258] ρ ≈ 0.725 [0248] ρ ≈ 0.867
4.3 [0247] ρ ≈ 0.496 [0147] ρ ≈ 0.678 [0137] ρ ≈ 0.697
4.4 [0258] ρ ≈ 0.174 [0369] ρ ≈ 0.896 [0358] ρ ≈ 0.911
5.3 [0358] ρ ≈ 0.295 [0148] ρ ≈ 0.887 [0258] ρ ≈ 0.887
5.4 [0358] ρ ≈ 0.491 [0247] ρ ≈ 0.511 [0148] ρ ≈ 0.928
6.1 [0158] ρ ≈ 0.168 [0157] ρ ≈ 0.834 [0157] ρ ≈ 0.939
6.4 [0147] ρ ≈ 0.334 [0137] ρ ≈ 0.725 [0158] ρ ≈ 0.867
7.1 [0347] ρ ≈ 0.317 [0147] ρ ≈ 0.849 [0237] ρ ≈ 0.883
7.2 [0137] ρ ≈ 0.020 [0136] ρ ≈ 0.980 [0237] ρ ≈ 0.994
7.3 [0258] ρ ≈ 0.496 [0258] ρ ≈ 0.697 [0358] ρ ≈ 0.678
8.2 [0258] ρ ≈ 0.404 [0248] ρ ≈ 0.597 [0358] ρ ≈ 0.936
8.3 [0246] ρ ≈ 0.337 [0135] ρ ≈ 0.664 [0135] ρ ≈ 0.924
8.4 [0147] ρ ≈ 0.508 [0258] ρ ≈ 0.677 [0158] ρ ≈ 0.686
9.1 [0148] ρ ≈ 0.326 [0137] ρ ≈ 0.860 [0158] ρ ≈ 0.872
9.2 [0258] ρ ≈ 0.497 [0248] ρ ≈ 0.504 [0358] ρ ≈ 0.938
9.3 [0148] ρ ≈ 0.332 [0048] ρ ≈ 0.671 [0158] ρ ≈ 0.915
9.4 [0147] ρ ≈ 0.254 [0258] ρ ≈ 0.794 [0247] ρ ≈ 0.819

10.1 [0347] ρ ≈ 0.491 [0236] ρ ≈ 0.560 [0246] ρ ≈ 0.809
10.2 [0147] ρ ≈ 0.023 [0247] ρ ≈ 0.987 [0137] ρ ≈ 0.987
10.3 [0369] ρ ≈ 0.033 [0258] ρ ≈ 0.974 [0258] ρ ≈ 0.974
11.1 [0257] ρ ≈ 0.300 [0157] ρ ≈ 0.764 [0258] ρ ≈ 0.877

Figure 29: Set-class distances in Choral.
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in [6.2]. Chord 1.3 is indeed the closest chord to [0158], not only in the first phrase, but in the
entire chorale.40 Though one might be led to believe that chord 2.1 is closer to [0158] than chord
1.1 based on the number of deviations from equal temperament, this is not the case. In addition,
chords 1.1 and 2.1 deviate from [0158] in different ways, with the first chord leaning to [0157] as the
second closest set class and the second chord leaning to [0148]. And though rounding each pitch of
chord 2.2 to the nearest equal tempered pitch yields a member of [0158], the chord as a whole is
actually slightly closer to [0157].

[6.8] A few other points can be gathered from studying Figure 29. The first three phrases end on
relatively “in tune” chords, while the fourth phrase ends on a decidedly “out of tune” sonority. This
unsettled phrase ending ushers in the extended final phrase, which begins with the least tempered
stretch in the entire chorale. The first five notes of the final phrase average a distance of ρ1 ≈ 0.414
from equal tempered set classes—the largest of any consecutive five chords. One can also readily
see those chords that are likely to be the most ambiguous to listeners conditioned to 12-tone equal
temperament. Chords 1.4, 2.2, 3.2, 4.3, 5.4, 7.3, 8.2, 8.4, 9.2, and 10.1 are all quite distant from
their nearest 12-tone equal tempered neighbors. Chords 1.4 and 8.4 are the most extreme in this
regard.

7 General distance metric for T -class space of n voices

[7.1] In this section we wish to generalize the distance metric of equation 5 for ordered sets of n
voices adopting the approach of Section 6. Let P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be points in
n-dimensional Euclidean space. The distance between P and Q is

d(P,Q)2 =
∑

(qi − pi)2. (16)

We factor out transposition by allowing Q to be transposed by the continuous variable x. The
distance squared between P and Tx(Q) is

f(x) = d(P, Tx(Q))2 =
∑

(qi + x− pi)2

= nx2 + 2x
∑

(qi − pi) +
∑

(qi − pi)2. (17)

In order to find the transposition of Q closest to P , we take the derivative of f(x) and find the
value of x for which d

dxf(x) = 0. The derivative of f(x) is

d
dxf(x) = 2nx + 2

∑
(qi − pi). (18)

Setting d
dxf(ξ) = 0,

ξ = −
∑

(qi − pi)
n

. (19)

40Given that each horn is limited to the pitches drawn from the overtone series, many of which are quite “out of
tune,” one might question if a chord exists under these constraints that is closer to [0158]. The answer is yes—for
instance, the non-tempered set 〈C, E, F, A〉, ordered from horn one to four, is ≈ 0.033 from [0158].
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Thus, Tξ(Q) minimizes the distance between P and Tx(Q). Substituting ξ for x in equation 17, we
have

f(ξ) = d(P, Tξ(Q))2 = n

(
−
∑

(qi − pi)
n

)2

− 2
∑

(qi − pi)
∑

(qi − pi)
n

+
∑

(qi − pi)2

=
(
∑

(qi − pi))
2

n
− 2

(
∑

(qi − pi))
2

n
+
∑

(qi − pi)2

d(P, Tξ(Q)) =

√∑
(qi − pi)2 −

(
∑

(qi − pi))
2

n
. (20)

[7.2] It is necessary to scale equation 20 so that Assumption 2a is not violated. If A ∆hB, then

d(A, Tξ(B)) = h

√
n− 1

n
. (21)

Since, by Assumption 2a, ρ(A,B) = h, we must scale equation 21 by
√

n
n−1 so that ρ(A,B) =√

n
n−1d(A,B) = h. Scaling equation 20 similarly we have,

ρ(P,Q) =
√

n

n− 1
d(P, Tξ(Q)) =

√√√√ n

n− 1

(∑
(qi − pi)2 −

(
∑

(qi − pi))
2

n

)
, (22)

which gives the distance between T -classes of ordered sets of n voices. (For n = 3 equation 22 is
equivalent to equation 6.)41

8 Two higher-dimensional examples

[8.0] As we have seen, continuous transformations in three-voice texture can be represented in
two-dimensional (2D) space. The non-tempered chords of Section 6 could have been represented
in 3D space, and textures of n voices can be represented in (n − 1)D space. Obviously, there are
enormous difficulties in intuiting such higher-dimensional spaces. In some situations it is possible
to reduce the number of dimensions and work with a more easily intuited space. In other situations
it is necessary to observe the space “indirectly.” This section features one example of each type of
situation.

41If P and Q are interpreted as pitch sets, the foregoing dovetails nicely with recent work on voice-leading distance
and “transposition-like” voice leading (Lewin 1998, Quinn 1996, Straus 2003). The basic notion is that the motion
from P to Q may be likened to some transposition with a certain amount of deviation, or offset. The metric used for
the offset from a “Tx-like” motion in both Lewin and Straus is

P
|qi − (pi +x)|. For example, if V is the motion from

〈B[3, C4, E4〉 to 〈E4, F4, A4〉, then V is “T5-like” with an offset of 1, since two voices move by T5 and the remaining
voice moves by T6. Furthermore, T5 is the transposition that best approximates V , since any Tx with x 6= 5 will yield
an offset greater than 1. In the context of the present paper, we can say that the motion from P to Q is “T−ξ-like”,
where ξ is defined as in equation 19, with an offset of ρ(P, Q). A comparison with these approaches (in particular,
Lewin 1998, Section 8, which explores voice leading in a continuous pc space) would be very relevant, but is beyond
the scope of the present paper.
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8.1 Spiral: continuous transpositional combination

[8.1.1] Consider the following harmonic interpolation, designated f(t) as t varies from 0 to 1:

F5 → A4

C]5 → F]4

A4 → D4

F]4 → B4

D4 → G]4

B[3 → E4

The top three voices descend continuously from an augmented triad to a major triad, while the
bottom three voices ascend continuously from an augmented triad to a major triad. Though the
space for hexachords is 5D, this particular transformation can be represented in lower dimensions.

[8.1.2] We begin by massaging f(t) into a more usable form. Let Q ‖ R = 〈q1, . . . , qn, r1, . . . , rn〉 be
the concatenation of Q and R. Expressing f(t) explicitly in terms of a concatenation of transposi-
tionally equivalent trichords, we have f(t) = α → ω, where α = 〈B[3, D4, F ]4〉 ‖ T11(〈B[3, D4, F ]4〉)
and ω = 〈E4, G]4, B4〉 ‖ T−2(〈E4, G]4, B4〉). Recalling the discussion in [4.2], the path of f(t) in
T -class space is indistinguishable from any interpolation of the form Tx(α) → Ty(ω). In particular,
g(t) = T2(α) → T−4(ω) is identical to f(t) in T -class space. We can write g(t) as the con-
catenation of two functions, g(t) = g1(t) ‖ g2(t), setting g1(t) = 〈C4, E4, G]4〉 → 〈C4, E4, G4〉
and g2(t) = T11(〈C4, E4, G]4〉) → T−2(〈C4, E4, G4〉) = Tx(g1(t)), where x = 11 − 13t. Let
Py = 〈0, 4〉 ‖ 〈y〉. Since g1(t) always contains 0 and 4 as its first two members (C4 = 0), g1(t) = Py,
where y = 8− t. Finally, let Py ∗ x = Py ‖ Tx(Py). Thus, g(t) = Py ∗ x.42

[8.1.3] Allowing x and y to vary independently over the reals generates a 2D slice of the 5D T -class
space for ordered sets of six voices. The region containing the hexachordal T -classes of the form
/Py ∗ x/T with x, y ∈ [0, 12) can be represented as a rectangular region of the Euclidean plane,
shown in Figure 30. For the remainder of this section, we will assume sets to be ordered pcsets.
Taking the values of x and y mod 12, we should imagine the region curled so that arrow heads
are coincident with their tails, forming the familiar torus. (For the purpose of visual clarity, the
torus and subsequent cross sections will be shown “unwrapped” as a region of the plane.) A few
hexachords are plotted in Figure 30. (In the figure and for the remainder of this section, pc letter
names followed by a “+” indicate augmented triads ordered root, third, fifth; pc letter names not
followed by a “+” indicate major triads ordered similarly.) The distance between the T -classes of
two ordered pcsets, Q and R, is defined as

ρpc(Q,R) = min ρ(Q,R′), (23)

for all R′ such that r′i ≡ ri mod 12. The x and y coordinates form a rectangular grid, rather than
the more typical square grid, since the distance, ρpc, between any Py0 ∗ x0 and Py0 ∗ (x0 + h) is
greater than that between any Py0 ∗x0 and Py0+h ∗x0.43 For example, the distance between P7 ∗ 6,

42This is an adaptation of transpositional combination for ordered sets in a continuous space. (Cohn 1991)
43Let ic(h) = 6− | 6− h mod 12 |. Then ρpc(Py0 ∗ x0, Py0 ∗ (x0 + h)) =

q
9
5
· ic(h) and ρpc (Py0 ∗ x0, Py0+h ∗ x0) =q

8
5
· ic(h).
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Figure 30: Region containing T -classes of the form /Py ∗ x/T , x, y ∈ [0, 12).

or C ‖ F], and P7 ∗ 7, or C ‖ G, is ρpc =
√

9
5 , whereas the distance between P7 ∗ 6 and P8 ∗ 6, or

C+ ‖ F]+, is ρpc =
√

8
5 . The x- and y-axes are orthogonal, however.44

[8.1.4] For g(t) it suffices to consider the region corresponding to x ∈ [0, 12), y ∈ [7, 8], shown
in Figure 31. (Since Figure 31 is a cross section of the torus in Figure 30, it can be imagined
as a cylinder, though one with a slight curve in the vertical direction.) Points labeled on the
figure correspond to integer values of x and y. The resulting 12-tone equal tempered T -classes
are identified by the set classes to which they belong. Motion along the top edge (circle), as x
increases from 0, yields a cycle of four equal tempered set classes repeated three times: [0,4,8] or
Aug. at x = 0, [0,1,4,5,8,9] or Hex. at x = 1, [0,2,4,6,8,10] or W.T. at x = 2, Hex. at x = 3, etc.
As x varies continuously, an augmented triad gradually evolves into a hexatonic collection, which
gradually evolves into a whole-tone collection, and so forth around the circle. Motion along the
bottom edge (circle), as x increases from 0, yields the equal tempered set classes [0,3,7] or Maj. at
x = 0, [0,1,3,4,7,8] or Harm.6, [0,2,3,5,7,9] or V 11, [0,1,4,6,9] or V ]9

7 , [0,1,4,5,8] or Hex.5, [0,1,3,5,8]
or M9, [0,1,3,6,7,9] or Petrouch., and etc. around the circle. As x varies continuously, a major triad
gradually evolves into a six-note subset of the harmonic minor, which gradually evolves into the
members of a V 11 chord, and so forth.

[8.1.5] The graph of g(t) and, thus, f(t), is plotted in this rectangular region. At t = 0, /f(t)/T =
/P8 ∗ 11/T = /α/T . As t increases, f(t) slopes gently down and to the left, wraps around the
left “boundary” to the right “boundary”, and converges on /P7 ∗ 10/T = /ω/T , or a V 11 chord.
The distance between f(t) and the equal-tempered set classes labeled in Figure 31 reveal those set
classes to which the transformation is most similar at any moment. For instance, at point A, f( 5

13)
is closest to the whole-tone collection; at point B, f(1

2) is equally close to the augmented triad, the

44Let A = /Py0 ∗ x0/T and B = /Py1 ∗ x0/T be fixed points in Figure 30. If the x- and y-axes are orthogonal,
then there is no other T -class of the form /Py1 ∗ x1/T that is closer to A than B. In other words, if the point
Bx = /Py1 ∗ x/T varies with respect to x, then ρ(A, Bx) is minimized when x = x0, which can be proved true using
a similar approach to that of Sections 6 and 7.
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Figure 32: Region containing T -classes of the form /Py ? x/T , x ∈ [0, 12), y ∈ [7, 8].

major ninth chord, the hexatonic collection, and its unique pentachordal subset; and at point C,
f( 9

13) is most similar to a V 11 chord.

[8.1.6] Though Figure 31 is a useful representation of the space in which this interpolation travels,
we can still get a better sense of this space, particularly near the center of the region, shown as a
dashed line. (This dashed line corresponds to all T -classes of the form /P7.5 ∗ x/T and intersects
f(t) at B.) Let Py ? x = Py ‖ Tx(P15−y). (The third voice of the first trichord is related to the
third voice of the second trichord by inversion about pc 7.5.) Then we can generate Figure 32 in
a similar manner to Figure 31, plotting /Py ? x/T with x ∈ [0, 12) and y ∈ [7, 8]. (The regions in
Figures 31 and 32 are exactly the same size.) As before, points labeled on the figure correspond
to integer values of x and y, and the resulting 12-tone equal tempered T -classes are identified by
their set classes. Motion along the bottom edge (circle), as x increases from 0, yields a cycle of
four equal tempered set classes repeated three times: [0,1,4,8] or Aug.M7 at x = 0, [014579] or
Aug.]11

]9 ) at x = 1, [013579] or Mystic at x = 2, Hex.5 at x = 3, etc. (For the bottom circle, x = 0
is near the far left.) Motion along the top edge (circle), as x increases from 0, yields the same
equal-tempered set classes in reverse. (For the top circle, x = 0 is near the far right.) Allowing the
triads to change from one type to the other while maintaining their position relative to one another
(allowing y to vary while holding x constant) does not result in vertical motion as in Figure 31.
Instead there is a slight slope to the left from any /P7 ? x0/T to /P8 ? x0/T . (This is necessary to
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preserve distances.)45,46

[8.1.7] The center of the regions in Figures 31 and 32 corresponds to the T -classes resulting from
all possible concatenations of 〈0, 4, 7.5〉 with itself, since this set lies precisely halfway between
〈0, 4, 7〉 and 〈0, 4, 8〉. The dashed line is therefore the intersection of the two regions: /P7.5 ∗ x/T =
/P7.5 ? x/T .47 We can get a sense of the space by allowing the two rectangles to intersect at right
angles, shown in Figure 33. (The left and right “boundaries” of both rectangles are aligned so that
this “boundary” meets the intersection of the two rectangles at x = 0. As before, the compound
object should be bent so that the arrow heads and tails are coincident.) The rectangle of Figure
31 is oriented horizontally, while that of Figure 32 is oriented vertically. In addition, the path of
f(t) is plotted on the horizontal rectangle. The closer f is to the center of the region in Figure 31
the closer it is to the region in Figure 32.

[8.1.8] Example 5 is a gradual, though not continuous, realization of f . f passes through a total of
thirteen steps in the horizontal direction around the cylinder in Figure 31 (dividing the cylinders
into twelve equal sections). Since it takes 65” to complete the interpolation in Example 5, every
five seconds corresponds to a single step around the cylinders. The reader is encouraged to listen
to Example 5 while following along with Figure 31 and/or 33.

[8.1.9] Figure 34 provides planar cross sections of Figure 33 at the points labeled A and C, and a
3D cross section at point B. Distances on these cross sections provide a reference for how these

45The distance between a point on the bottom line, /P7 ? x0/T , and the top line, /P7 ? x0/T , is minimized at

x = x0 + 2
3
, where ρpc =

q
8
5
. For example, the point on the top circle directly above /P7 ? 6/T , or /C ‖ F]+/T , is

/P8 ? 6 2
3
/T , or the T -class of C+ concatenated with the major triad a third tone above F .

46Allowing y to vary continuously over the interval [0,12) would yield a torus like Figure 30.
47In three dimensions, the intersection of two tori would be another three-dimensional object. However, we are

actually dealing with two tori interacting in a four-dimensional space, in which case the intersection of the two objects
is a two-dimensional circle, represented here unwrapped as a line.
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Figure 35: Realization of a common bcset in Reich’s music.

points compare with neighboring 12-tone equal tempered set classes. A is most like the whole-tone
collection, but is also similar to the Petrouchka chord and the mystic collection. Point C is most
similar to V 11, but one can also hear traces of the mystic collection. The midpoint of f , B, lies
at the intersection of the two rectangles. B is closest to Aug.M7 and Hex.5. The next closest set
classes to B are those lying on the horizontal rectangle.48 Returning to Figure 33, at point D all
six voices in f converge on a consonant triad-like sonority.

8.2 à la Steve Reich: continuous multiplicative operation

[8.2.1] The last example is a variation of Steve Reich’s phase technique. Figure 35 is a realization
of a very common beat-class set (bcset) in Reich’s music, P = {0, 1, 2, 4, 5, 7, 9, 10} mod 12. Let’s
consider a transformation in which every “voice” begins with beat class (bc) 0 and gradually moves
to one of the bcs in the above bcset in a given time span. We can model this transformation
as a continuous multiplicative operation on P . Let Mt(P ) = {0t, 1t, 2t, 4t, 5t, 7t, 9t, 10t}, where
t ∈ [0, 12) and all multiplications are taken mod 12. The particular transformation described above
is equivalent to Mt(P ) as t varies from 0 to 1. We will designate the general transformation as t
varies from 0 to 12 ≡ 0 as h(t) = Mt(P ).

[8.2.2] Since we can not hear a bcset changing continuously, it is necessary to sample the interpola-
tion at evenly spaced intervals. For instance, sampling h at multiples of t = 1

4 yields the following

48Considering T -classes not included in Figure 33, B is also a distance of ρpc ≈ 0.922 from eight other T -classes.
However, at any time, t0, the 12-tone equal tempered T -class(es) closest to f(t0) is (are) included in Figure 33.
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sequence:

h(0) = {0, 0, 0, 0, 0, 0, 0, 0},
h(1

4) = {0, 1
4 , 1

2 , 1, 11
4 , 13

4 , 21
4 , 21

2},
h(1

2) = {0, 1
2 , 1, 2, 21

2 , 31
2 , 41

2 , 5},
...

h(1) = {0, 1, 2, 4, 5, 7, 9, 10},
...

h(12) = {0, 0, 0, 0, 0, 0, 0, 0}.

Example 6 is a realization of this process with t varying from 0 to 3, sampling h at multiples of
t = 1

20 .

[8.2.3] As the number of sample points increases, the realization of the interpolation becomes more
gradual. Taking an infinite number of samples will yield a truly continuous transformation. Though
this is not possible in practice (who has the time!), we can imagine doing so in order to get a better
sense of the bcsets this interpolation will pass through.

[8.2.4] There are many moments in h, say h(π), where the resulting rhythm is difficult or impossible
to intuit, but there are also many moments where h converges on simpler rhythms. For instance,
since M2(P ) = {0, 2, 4, 6, 8, 10}, h(2) converges on a rhythm of six even divisions of the meter—e.g.,
quarter notes in 6/4 meter if we assume elements of P to be multiples of an eighth note. Similarly,
since M3(P ) = {0, 3, 6, 9}, h(3) converges on a rhythm of four even divisions—e.g., dotted-quarter
notes in 12/8 meter. At first glance h(12

7 ) ≈ {0, 1.714, 3.428, 5.143, 6.858, 8.571} appears to be a
very complicated rhythmic pattern. However, if we divide the meter into 7 equal divisions rather
than 12, then h(12

7 ) = {0, 1, 2, 3, 4, 5} mod 7—a very audible convergence on a fairly simple meter.
How can we predict the values of t that yield similar convergences?
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Figure 37: h(t) before and after t = 1.

[8.2.5] In order to answer the question it will be helpful to take a geometric perspective of the
multiplicative operation. The circle on the far left of Figure 36 has a circumference of 8. Superim-
posed on this circle is a chain of three beads with an arc length of 1 between each, corresponding to
A = {0, 1, 2} mod 8. The normal view of M2 is that the chain of beads is stretched by a factor of
two, while the circle remains fixed: M2(A) = {0, 2, 4} mod 8. The pair of circles on the right offers
a different perspective. The chain remains the same length while the circle is contracted by a factor
of 2 to a circumference of 4. The beads still correspond to {0, 1, 2}, but in a mod 4 environment
rather than mod 8. If a single revolution around each circle corresponds to the time span of the
periodicity, then it makes more sense to measure distance as the ratio of the arc length to the
circumference. Accordingly, we rewrite A as {0

8 , 1
8 , 2

8} mod 1 and M2(A) = {0
8 , 2

8 , 4
8} = {0

4 , 1
4 , 2

4}
mod 1. For the remainder of this section we will adopt the convention of writing Qm = {q1, . . . , qn}m

for { q1

m , . . . , qn

m } mod 1. Generalizing the situation on the right side of the figure, the operation
Mx dilates a circle of circumference m to a circle of circumference m

x . Thus, Mx(Qm) = Qm
x
.

[8.2.6] Now we can understand why M 12
7
(P ) yields a subset of seven equal divisions of the rhythmic

period. Since m = 12, t = 12
7 , and m

t = 12 · 7
12 = 7, M 12

7
(P12) = {0, 1, 2, 4, 5, 7, 9, 10}7 ≡

{0, 1, 2, 3, 4, 5}7 = P7. Any value of t that can be written as a fraction of the form 12
k will yield the

bcset Pk. Figure 37 gives circle diagrams of h(t), shown with black points, before and after t = 1.
At t = 12

13 the chain of beads, P , is superimposed on a circle with a circumference of 13, yielding
P13. The circle contracts as t increases. At t = 1 we have P12, the rhythm in Figure 35. At t = 12

11 ,
h(t) = P11, where the “last” bc of P , 10, is one step away from the “first” bc, 0. As the circle
contracts the “last” bc continues to approach the “first” bc until the two overlap at t = 12

10 yielding
P10, which contains only 7 bcs.

[8.2.7] Similar convergences will continue to occur at t = 12
9 , t = 12

8 , and so forth. Convergences
on relatively simple rhythms occur in between these points as well. For instance, consider h at
t13 = 24

13 , which occurs between t = 12
7 and t = 12

6 . We can rewrite t13 as 2m
13 , where m = 12. Then

M 2m
13

(Pm) = Pm· 13
2m

= P 13
2
. But P 13

2
= M2(P13), so h(24

13) = M2(P13) = {0, 2, 4, 8, 10, 14, 18, 20}13 ≡
{0, 1, 2, 4, 5, 7, 8, 10}13. Similarly, h(24

11) = M2(P11). Any value for t can be written in the form
t = am

k , where a, k ∈ R,m ∈ Z. Thus h(t) can be written as h(am
k ) = Mam

k
(Pm) = Ma(Pk). When

a and k are integers and k is relatively small, as in the previous examples, we are likely to be able
to intuit the resulting rhythm. However, for larger values of k, this intuition becomes less likely.

39



t h(t) rhythmic notation

t1 = 1
2 (15”) {0, 1, 2, 4, 5, 7, 9, 10}24

4
6 œ œ œ œ œ œ œ œ œ Ó .

t2 = 3
5 (18”) {0, 1, 2, 4, 5, 7, 9, 10}20

4
5 œ œ œ œ œ œ œ œ œ Ó

t3 = 3
4 (22.5”) {0, 1, 2, 4, 5, 7, 9, 10}16

4
4 œ œ œ œ œ œ œ œ œ Œ

t4 = 5
6 (25”) {0, 1, 2, 4, 5, 7, 9, 10}14

8
7 œ œ œ œ œ œ œ œ œ ‰

t5 = 1 (30”) {0, 1, 2, 4, 5, 7, 9, 10}12
4
3 œ œ œ œ œ œ œ œ œ

t6 = 12
11 (≈33”) {0, 1, 2, 4, 5, 7, 9, 10}11

8
11 œ œ

J
œ ‰ œ œ ‰

J
œ ‰ œ œ

t7 = 6
5 (36”) {0, 1, 2, 4, 5, 7, 9}10

4
5 œ œ

J
œ ‰ œ œ ‰

J
œ ‰
J
œ

t8 = 4
3 (40”) {0, 1, 2, 4, 5, 7}9

8
9 œ œ œ ‰ œ œ ‰

J
œ ‰

t9 = 24
17 (≈42”) {0, 1, 2, 3, 4, 8, 10, 14}17

16
17 œ œ œ œ

J
œ ‰ œ œ ‰ .

J
œ

t10 = 3
2 (45”) {0, 1, 2, 4, 5, 7}8

4
4 œ œ œ ‰ œ œ ‰ œ

t11 = 8
5 (48”) {0, 2, 3, 4, 5, 8, 10, 14}15

16
15 œ œ œ œ .œ œ œ ‰

R
œ

t12 = 12
7 (≈51”) {0, 1, 2, 3, 4, 5}7

8
7 œ œ œ œ œ œ ‰

t13 = 24
13 (≈55”) {0, 1, 2, 4, 5, 7, 8, 10}13

16
13 œ œ œ œ œ œ œ .œ

t14 = 2 (60”) {0, 1, 2, 3, 4, 5}6
8
6 œ œ œ œ œ œ

t15 = 36
17 (≈63”) {0, 3, 4, 6, 10, 12, 13, 15}17

16
17 .œ œ œ œ ‰

J
œ œ œ œ

t16 = 24
11 (≈65”) {0, 2, 3, 4, 7, 8, 9, 10}11

8
11 œ œ œ œ ‰

J
œ œ œ œ

t17 = 9
4 (67.5”) {0, 3, 5, 6, 11, 12, 14}16

4
4 .œ œ œ œ œ ‰ .

R
œ œ œ

t18 = 12
5 (72”) {0, 1, 2, 4}5

4
5 œ œ œ Œ œ

t19 = 18
7 (≈77”) {0, 1, 2, 3, 6, 7, 12, 13}14

8
7 œ œ œ œ ‰ œ œ Œ œ œ

t20 = 24
9 (80”) {0, 1, 2, 4, 5, 8}9

8
9 œ œ œ ‰ œ œ Œ

J
œ

t21 = 36
13 (≈83”) {0, 1, 2, 3, 4, 5, 8, 12}13

16
13 œ œ œ œ œ œ œ

R
œ

t18 = 3 (90”) {0, 1, 2, 3}4
4
4 œ œ œ œ

t 6/7

36/1724/17 36/13

24/9

18/7

12/5

9/4

24/112

24/13

12/7

8/5

3/24/3

6/5

12/113/5

3/4

3

1/2 10

Figure 38: Rhythmic reference points for bcset interpolation.
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For instance, h(7
5) = h(7·12

5·12) = M7(P60), or

8
15 .œ .œ œ .œ œ œœ .œ œœ œ œœ .œ œœ œ .œ

,

is unlikely to induce an “ah-ha” response from the listener.

[8.2.8] Figure 38 lists the values of t and corresponding values of h(t) where the resultant rhythm
converges on relatively simple rhythms. The notation on the right column of the table is provided
as an aid. Note values from one row to another are typically not equivalent. For example, the
sixteenth notes in the first row are of different duration than those of the second row—it is the
entire meter that remains constant in duration. Additionally, while all rhythms are oriented so that
bc 0 is the downbeat, listeners may perceive some other bc as the downbeat, yielding a rotation of
the notated rhythm. In Example 6, t = 1 occurs at 30”, t = 2 occurs at 60”, and so forth. The
initial 30” is a gradual transformation from the opening attacks on the downbeat to the rhythm
in Figure 35. After 30” the convergences listed in Table 38 become more difficult to predict. The
reader is encouraged to follow along the table while listening to Example 6. (A time line is included
at the bottom of Figure 38 for reference.) Example 7 is a six-minute realization of the entire process
as t varies from 0 to 12 for readers who may be interested.

Return to beginning of article
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